Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts

  • Hao Zhang
  • Haoyi Li
  • Bilal Akram
  • Xun WangEmail author
Research Article


Structure–activity relationship (SAR) is the key problem of nanoscience, thus to fabricate novel and well-defined nanostructure will provide a new insight on catalyst preparation method. Highly active and low cost electrocatalysts for oxygen evolution reaction (OER) are of great importance for future renewable energy conversion and storage. Herein, NiFe-based layered double hydroxides with laminar structure (NFLS) were successfully fabricated via a one-step hydrothermal approach by using sodium dodecyl sulfate as surfactant. The as-fabricated NFLS showed a well-defined periodic layered-stacking geometry with a scale down to 1-nm. Benefitting from the unique structure, NFLS exhibited an excellent catalytic activity towards OER with current densities of 10 mA·cm−2 at overpotential of 197 mV. The synergistic effect of Ni and Fe plays a key role in electrode reactions. The present work provides a new insight to improve the OER performance by rational design of electrocatalysts with unique structures.


layered double hydroxide structure–activity relationship ultrathin nanostructure electrocatalysis oxygen evolution reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 21431003 and 21521091) and the National Key Technology R&D Program of China (No. 2016YFA0202801).

Supplementary material

12274_2019_2284_MOESM1_ESM.pdf (2.2 mb)
Fabrication of NiFe layered double hydroxide with well-defined laminar superstructure as highly efficient oxygen evolution electrocatalysts


  1. [1]
    Yang, Y.; Yang, Y.; Chen, S. M.; Lu, Q. C.; Song, L.; Wei, Y.; Wang, X. Atomic-level molybdenum oxide nanorings with full-spectrum absorption and photoresponsive properties. Nat. Commun. 2017, 8, 1559.CrossRefGoogle Scholar
  2. [2]
    Hu, S.; Wang, X. Ultrathin nanostructures: Smaller size with new phenomena. Chem. Soc. Rev. 2013, 42, 5577–5594.CrossRefGoogle Scholar
  3. [3]
    Gu, C. D.; Ge, X.; Wang, X. L.; Tu, J. P. Cation-anion double hydrolysis derived layered single metal hydroxide superstructures for boosted supercapacitive energy storage. J. Mater. Chem. A 2015, 3, 14228–14238.CrossRefGoogle Scholar
  4. [4]
    Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.CrossRefGoogle Scholar
  5. [5]
    Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.CrossRefGoogle Scholar
  6. [6]
    Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.CrossRefGoogle Scholar
  7. [7]
    Andronescu, C.; Barwe, S.; Ventosa, E.; Masa, J.; Vasile, E.; Konkena, B.; Möller, S.; Schuhmann, W. Powder catalyst fixation for post-electrolysis structural characterization of NiFe layered double hydroxide based oxygen evolution reaction electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 11258–11262.CrossRefGoogle Scholar
  8. [8]
    Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.CrossRefGoogle Scholar
  9. [9]
    Song, F.; Hu, X. L. Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 2014, 136, 16481–16484.CrossRefGoogle Scholar
  10. [10]
    Han, N.; Zhao, F. P.; Li, Y. G. Ultrathin nickel-iron layered double hydroxide nanosheets intercalated with molybdate anions for electrocatalytic water oxidation. J. Mater. Chem. A 2015, 3, 16348–16353.CrossRefGoogle Scholar
  11. [11]
    Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.CrossRefGoogle Scholar
  12. [12]
    Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1781–1781.CrossRefGoogle Scholar
  13. [13]
    Yang, J. H.; Cooper, J. K.; Toma, F. M.; Walczak, K. A.; Favaro, M.; Beeman, J. W.; Hess, L. H.; Wang, C.; Zhu, C. H.; Gul, S. et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat. Mater. 2017, 16, 335–341.CrossRefGoogle Scholar
  14. [14]
    Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and feni double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.CrossRefGoogle Scholar
  15. [15]
    Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.CrossRefGoogle Scholar
  16. [16]
    Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García- Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.CrossRefGoogle Scholar
  17. [17]
    Ge, X. M.; Liu, Y. Y.; Goh, F. W. T.; Hor, T. S. A.; Zong, Y.; Xiao, P.; Zhang, Z.; Lim, S. H.; Li, B.; Wang, X. et al. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. ACS Appl. Mater. Interfaces 2014, 6, 12684–12691.CrossRefGoogle Scholar
  18. [18]
    Li, Y. Y.; Liu, B.; Wang, H.; Su, X. S.; Gao, L.; Zhou, F.; Duan, G. T. Co3O4 nanosheet-built hollow dodecahedrons via a two-step self-templated method and their multifunctional applications. Sci. China Mater. 2018, 61, 1575–1586.CrossRefGoogle Scholar
  19. [19]
    Guo, Y.; Yao, Y.; Li, H.; He, L. L.; Zhu, Z. W.; Yang, Z. Z.; Gong, L. D.; Liu, C.; Zhao, D. X. Theoretical study on the mechanism of photosynthetic oxygen evolution by ABEEM/MM/MD and BS-DFT. Acta Chim. Sin. 2017, 75, 903–913.CrossRefGoogle Scholar
  20. [20]
    Gao, M. R.; Sheng, W. C.; Zhuang, Z. B.; Fang, Q. R.; Gu, S.; Jiang, J.; Yan, Y. S. Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 2014, 136, 7077–7084.CrossRefGoogle Scholar
  21. [21]
    Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.CrossRefGoogle Scholar
  22. [22]
    Zhang, Y. Q.; Ouyang, B.; Xu, J.; Jia, G. C.; Chen, S.; Rawat, R. S.; Fan, H. J. Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 8670–8674.CrossRefGoogle Scholar
  23. [23]
    Wang, Y. Y.; Xie, C.; Liu, D. D.; Huang, X. B.; Huo, J.; Wang, S. Y. Nanoparticle-stacked porous nickel-iron nitride nanosheet: A highly efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces 2016, 8, 18652–18657.CrossRefGoogle Scholar
  24. [24]
    Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.CrossRefGoogle Scholar
  25. [25]
    Swesi, A. T.; Masud, J.; Nath, M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction. Energy Environ. Sci. 2016, 9, 1771–1782.CrossRefGoogle Scholar
  26. [26]
    Xu, X.; Song, F.; Hu, X. L. A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat. Commun. 2016, 7, 12324.CrossRefGoogle Scholar
  27. [27]
    Wang, C. D.; Jiang, J.; Ding, T.; Chen, G. H.; Xu, W. J.; Yang, Q. Monodisperse ternary NiCoP nanostructures as a bifunctional electrocatalyst for both hydrogen and oxygen evolution reactions with excellent performance. Adv. Mater. Interfaces 2016, 3, 1500454.CrossRefGoogle Scholar
  28. [28]
    Pramanik, M.; Li, C. L.; Imura, M.; Malgras, V.; Kang, Y. M.; Yamauchi, Y. Ordered mesoporous cobalt phosphate with crystallized walls toward highly active water oxidation electrocatalysts. Small 2016, 12, 1709–1715.CrossRefGoogle Scholar
  29. [29]
    Liu, M. J.; Li, J. H. Cobalt phosphide hollow polyhedron as efficient bifunctional electrocatalysts for the evolution reaction of hydrogen and oxygen. ACS Appl. Mater. Interfaces 2016, 8, 2158–2165.CrossRefGoogle Scholar
  30. [30]
    He, P. L.; Yu, X. Y.; Lou, X. W. Carbon-incorporated nickel-cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution. Angew. Chem., Int. Ed. 2017, 56, 3897–3900.CrossRefGoogle Scholar
  31. [31]
    Chi, J.; Yu, H. M.; Qin, B. W.; Fu, L.; Jia, J.; Yi, B. L.; Shao, Z. G. Vertically aligned FeOOH/NiFe layered double hydroxides electrode for highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 2017, 9, 464–471.CrossRefGoogle Scholar
  32. [32]
    Zhang, C.; Shao, M. F.; Zhou, L.; Li, Z. H.; Xiao, K. M.; Wei, M. Hierarchical NiFe layered double hydroxide hollow microspheres with highly-efficient behavior toward oxygen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 33697–33703.CrossRefGoogle Scholar
  33. [33]
    Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.CrossRefGoogle Scholar
  34. [34]
    Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum Dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.CrossRefGoogle Scholar
  35. [35]
    Xiong, X. Y.; Cai, Z.; Zhou, D. J.; Zhang, G. X.; Zhang, Q.; Jia, Y.; Duan, X. X.; Xie, Q. X.; Lai, S. B.; Xie, T. H. et al. A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide. Sci. China Mater. 2018, 61, 939–947.CrossRefGoogle Scholar
  36. [36]
    Ma, J. Z.; Xiang, Z. H.; Zhang, J. T. Three-dimensional nitrogen and phosphorous Co-doped graphene aerogel electrocatalysts for efficient oxygen reduction reaction. Sci. China Chem. 2018, 61, 592–597.CrossRefGoogle Scholar
  37. [37]
    Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.CrossRefGoogle Scholar
  38. [38]
    Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.CrossRefGoogle Scholar
  39. [39]
    Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744–6753.CrossRefGoogle Scholar
  40. [40]
    Yeo, B. S.; Bell, A. T. Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2011, 133, 5587–5593.CrossRefGoogle Scholar
  41. [41]
    Parvulescu, A. N.; Hausoul, P. J. C.; Bruijnincx, P. C. A.; Korhonen, S. T.; Teodorescu, C.; Gebbink, R. J. M. K.; Weckhuysen, B. M. Telomerization of 1,3-butadiene with biomass-derived alcohols over a heterogeneous Pd/TPPTS catalyst based on layered double hydroxides. ACS Catal. 2011, 1, 526–536.CrossRefGoogle Scholar
  42. [42]
    Liu, Z. P.; Ma, R. Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: Assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 2006, 128, 4872–4880.CrossRefGoogle Scholar
  43. [43]
    Yu, L.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Yu, F.; Bao, J. M.; Yu, Y.; Chen, S.; Ren, Z. F. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 2017, 10, 1820–1827.CrossRefGoogle Scholar
  44. [44]
    Ni, B.; He, T.; Wang, J. O.; Zhang, S. M.; Ouyang, C.; Long, Y.; Zhuang, J.; Wang, X. The formation of (NiFe)S2 pyrite mesocrystals as efficient pre-catalysts for water oxidation. Chem. Sci. 2018, 9, 2762–2767.CrossRefGoogle Scholar
  45. [45]
    Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P. Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 2013, 135, 11580–11586.CrossRefGoogle Scholar
  46. [46]
    Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.CrossRefGoogle Scholar
  47. [47]
    Cheng, Y.; Dou, S.; Saunders, M.; Zhang, J.; Pan, J.; Wang, S. Y.; Jiang, S. P. A class of transition metal-oxide@MnOx core-shell structured oxygen electrocatalysts for reversible O2 reduction and evolution reactions. J. Mater. Chem. A 2016, 4, 13881–13889.CrossRefGoogle Scholar
  48. [48]
    Hou, J. G.; Sun, Y. Q.; Cao, S. Y.; Wu, Y. Z.; Chen, H.; Sun, L. C. Graphene dots embedded phosphide nanosheet-assembled tubular arrays for efficient and stable overall water splitting. ACS Appl. Mater. Interfaces 2017, 9, 24600–24607.CrossRefGoogle Scholar
  49. [49]
    Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations