Glutathione-capped quantum dots for plasma membrane labeling and membrane potential imaging

  • Guangcun ChenEmail author
  • Yejun Zhang
  • Zhao Peng
  • Dehua Huang
  • Chunyan Li
  • Qiangbin WangEmail author
Research Article


The plasma membrane of cells is a crucial biological membrane that involved in a variety of cellular processes including cell signaling transduction through membrane electrical activity. Recently, monitoring membrane electrical activity using fluorescence imaging has attracted numerous attentions for its potential applications in evaluating how the nervous system works. However, the development of ideal fluorescent voltage-sensitive probes with both high membrane labeling efficiency and voltage sensitivity is still retain a big challenge. Herein, glutathione-capped CdSe@ZnS quantum dots (CdSe@ZnS-GSH QDs) with a size of 2.5 nm and an emission peak at 520 nm are synthesized using a facile ligand exchange method for plasma membrane labeling and membrane potential imaging. The as-synthesized CdSe@ZnS-GSH QDs can effectively label cell membrane at neutral pH within 30 min and exhibit excellent optical stability in continuous imaging for up to 60 min. With the test concentration up to 200 nM, CdSe@ZnS-GSH QDs show high biocompatibility to cells and do not affect cell proliferation, disturb cell membrane integrity or cause apoptosis and necrosis of cells. Then, a two-component voltage sensor strategy based on fluorescence resonance energy transfer (FRET) between CdSe@ZnS-GSH QDs and the dipicrylamine (DPA) is successfully developed to monitor the membrane potential by the fluorescence of CdSe@ZnS-GSH QDs. This study offers a facile strategy for labeling plasma membrane and monitoring the membrane potential of cells and will hold great potential in the research of signaling within intact neuronal circuits.


quantum dots membrane labeling membrane potential imaging fluorescence imaging neuron 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Prof. Jiulin Du and Dr. Rongwei Zhang at Institute of Neuroscience, Chinese Academy of Sciences for their general help and valuable suggestion in the patch clamp study. This work was financially supported by the Strategic Priority Research Program (No. XDB32030200) and Youth Innovation Promotion Association Program from Chinese Academy of Sciences, the National Key Research and Development Program (Nos. 2016YFA0101503 and 2017YFA0205503), the National Natural Science Foundation of China (Nos. 21778070, 21671198, 21425103, and 21501192), and the National Natural Science Foundation of Jiangsu Province (Nos. BK20170066 and BE2016682).

Supplementary material

12274_2019_2283_MOESM1_ESM.pdf (1.6 mb)
Electronic Supplementary Material


  1. [1]
    Keller, B. U.; Hedrich, R.; Raschke, K. Voltage-dependent anion channels in the plasma membrane of guard cells. Nature 1989, 341, 450–453.CrossRefGoogle Scholar
  2. [2]
    Steyer, J. A.; Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell. Biol. 2001, 2, 268–275.CrossRefGoogle Scholar
  3. [3]
    Anitei, M.; Hoflack, B. Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat. Cell Biol. 2012, 14, 11–19.CrossRefGoogle Scholar
  4. [4]
    Sunshine, H.; Iruela-Arispe, M. L. Membrane lipids and cell signaling. Curr. Opin. Lipidol. 2017, 28, 408–413.CrossRefGoogle Scholar
  5. [5]
    Green, S. H. Neurotrophic signaling by membrane electrical activity in spiral ganglion neurons. In Cell and Molecular Biology of the Ear. Lim, D. J.; Springer: Boston, 2000; pp 165–182.CrossRefGoogle Scholar
  6. [6]
    Shu, Y. S.; Hasenstaub, A.; Duque, A.; Yu, Y. G.; McCormick, D. A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 2006, 441, 761–765.CrossRefGoogle Scholar
  7. [7]
    Yamashita, T.; Pala, A.; Pedrido, L.; Kremer, Y.; Welker, E.; Petersen, C. C. H. Membrane potential dynamics of neocortical projection neurons driving target-specific signals. Neuron 2013, 80, 1477–1490.CrossRefGoogle Scholar
  8. [8]
    Gong, Y. Y.; Huang, C.; Li, J. Z.; Grewe, B. F.; Zhang, Y. P.; Eismann, S.; Schnitzer, M. J. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 2015, 350, 1361–1366.CrossRefGoogle Scholar
  9. [9]
    Knöpfel, T.; Gallero-Salas, Y.; Song, C. C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr. Opin. Chem. Biol. 2015, 27, 75–83.CrossRefGoogle Scholar
  10. [10]
    Vogt, N. Voltage sensors: Challenging, but with potential. Nat. Methods 2015, 12, 921–924.CrossRefGoogle Scholar
  11. [11]
    Gradinaru, V.; Flytzanis, N. C. Fluorescent boost for voltage sensors. Nature 2016, 529, 469–470.CrossRefGoogle Scholar
  12. [12]
    Efros, A. L.; Delehanty, J. B.; Huston, A. L.; Medintz, I. L.; Barbic, M.; Harris, T. D. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons. Nat. Nanotechnol. 2018, 13, 278–288.CrossRefGoogle Scholar
  13. [13]
    Chen, T. W.; Wardill, T. J.; Sun, Y.; Pulver, S. R.; Renninger, S. L.; Baohan, A.; Schreiter, E. R.; Kerr, R. A.; Orger, M. B.; Jayaraman, V. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499, 295–300.CrossRefGoogle Scholar
  14. [14]
    St-Pierre, F.; Marshall, J. D.; Yang, Y.; Gong, Y. Y.; Schnitzer, M. J.; Lin, M. Z. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat. Neurosci. 2014, 17, 884–889.CrossRefGoogle Scholar
  15. [15]
    St-Pierre, F.; Chavarha, M.; Lin, M. Z. Designs and sensing mechanisms of genetically encoded fluorescent voltage indicators. Curr. Opin. Chem. Biol. 2015, 27, 31–38.CrossRefGoogle Scholar
  16. [16]
    Yang, H. H.; St-Pierre, F. Genetically encoded voltage indicators: Opportunities and challenges. J. Neurosci. 2016, 36, 9977–9989.CrossRefGoogle Scholar
  17. [17]
    Bradley, J.; Luo, R.; Otis, T. S.; DiGregorio, D. A. Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J. Neurosci. 2009, 29, 9197–9209.CrossRefGoogle Scholar
  18. [18]
    Huang, Y. L.; Walker, A. S.; Miller, E. W. A photostable silicon rhodamine platform for optical voltage sensing. J. Am. Chem. Soc. 2015, 137, 10767–10776.CrossRefGoogle Scholar
  19. [19]
    Miller, E. W. Small molecule fluorescent voltage indicators for studying membrane potential. Curr. Opin. Chem. Biol. 2016, 33, 74–80.CrossRefGoogle Scholar
  20. [20]
    Macianskiene, R.; Almanaityte, M.; Treinys, R.; Navalinskas, A.; Benetis, R.; Jurevicius, J. Spectral characteristics of voltage-sensitive indocyanine green fluorescence in the heart. Sci. Rep. 2017, 7, 7983.CrossRefGoogle Scholar
  21. [21]
    Xu, Y. X.; Peng, L. X.; Wang, S. C.; Wang, A. Q.; Ma, R. R.; Zhou, Y.; Yang, J. H.; Sun, D. E.; Lin, W.; Chen, X. et al. Hybrid indicators for fast and sensitive voltage imaging. Angew. Chem., Int. Ed. 2018, 57, 3949–3953.CrossRefGoogle Scholar
  22. [22]
    Fink, A. E.; Bender, K. J.; Trussell, L. O.; Otis, T. S.; DiGregorio, D. A. Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. PLoS One 2012, 7, e41434.CrossRefGoogle Scholar
  23. [23]
    Marshall, J. D.; Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 2013, 7, 4601–4609.CrossRefGoogle Scholar
  24. [24]
    Rowland, C. E.; Susumu, K.; Stewart, M. H.; Oh, E.; Mäkinen, A. J.; O’Shaughnessy, T. J.; Kushto, G.; Wolak, M. A.; Erickson, J. S.; Efros, A. L. et al. Electric field modulation of semiconductor quantum dot photoluminescence: Insights into the design of robust voltage-sensitive cellular imaging probes. Nano Lett. 2015, 15, 6848–6854.CrossRefGoogle Scholar
  25. [25]
    Nag, O. K.; Stewart, M. H.; Deschamps, J. R.; Susumu, K.; Oh, E.; Tsytsarev, V.; Tang, Q. G.; Efros, A. L.; Vaxenburg, R.; Black, B. J. et al. Quantum dot-peptide-fullerene bioconjugates for visualization of in vitro and in vivo cellular membrane potential. ACS Nano 2017, 11, 5598–5613.CrossRefGoogle Scholar
  26. [26]
    Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum dots versus organic dyes as fluorescent labels. Nat. Methods 2008, 5, 763–775.CrossRefGoogle Scholar
  27. [27]
    Chen, G. C.; Tian, F.; Zhang, Y.; Zhang, Y. J.; Li, C. Y.; Wang, Q. B. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv. Funct. Mater. 2014, 24, 2481–2488.CrossRefGoogle Scholar
  28. [28]
    Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window. Biomaterials 2014, 35, 393–400.CrossRefGoogle Scholar
  29. [29]
    Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.CrossRefGoogle Scholar
  30. [30]
    Zheng, Y.; Gao, S.; Ying, J. Y. Synthesis and cell-imaging applications of glutathione-capped CdTe quantum dots. Adv. Mater. 2007, 19, 376–380.CrossRefGoogle Scholar
  31. [31]
    Wang, Q. B.; Liu, Y.; Ke, Y. G.; Yan, H. Quantum dot bioconjugation during core-shell synthesis. Angew. Chem., Int. Ed. 2007, 47, 316–319.CrossRefGoogle Scholar
  32. [32]
    Hu, F.; Li, C. Y.; Zhang, Y. J.; Wang, M.; Wu, D. M.; Wang, Q. B. Real-time in vivo visualization of tumor therapy by a near-infrared-II Ag2S quantum dot-based theranostic nanoplatform. Nano Res. 2015, 8, 1637–1647.CrossRefGoogle Scholar
  33. [33]
    Zhao, P.; Xu, Q.; Tao, J.; Jin, Z. W.; Pan, Y.; Yu, C. M.; Yu, Z. Q. Near infrared quantum dots in biomedical applications: Current status and future perspective. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1483.CrossRefGoogle Scholar
  34. [34]
    Nunez, J. Primary culture of hippocampal neurons from P0 newborn rats. J. Vis. Exp. 2008, 19, e895.Google Scholar
  35. [35]
    Rueden, C. T.; Schindelin, J.; Hiner, M. C.; DeZonia, B. E.; Walter, A. E.; Arena, E. T.; Eliceiri, K. W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 2017, 18, 529.CrossRefGoogle Scholar
  36. [36]
    Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695–3702.CrossRefGoogle Scholar
  37. [37]
    Zheng, Y.; Yang, Z.; Ying, J. Y. Aqueous synthesis of glutathione-capped ZnSe and Zn1-xCdxSe alloyed quantum dots. Adv. Mater. 2007, 19, 1475–1479.CrossRefGoogle Scholar
  38. [38]
    Yu, M. X.; Zhou, C.; Liu, J. B.; Hankins, J. D.; Zheng, J. Luminescent gold nanoparticles with pH-dependent membrane adsorption. J. Am. Chem. Soc. 2011, 133, 11014–11017.CrossRefGoogle Scholar
  39. [39]
    Nakane, Y.; Tsukasaki, Y.; Sakata, T.; Yasuda, H.; Jin, T. Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1,000–1,400 nm). Chem. Commun. 2013, 49, 7584–7586.CrossRefGoogle Scholar
  40. [40]
    Dimitrov, D.; He, Y.; Mutoh, H.; Baker, B. J.; Cohen, L.; Akemann, W.; Knöpfel, T. Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One 2007, 2, e440.CrossRefGoogle Scholar
  41. [41]
    Perron, A.; Mutoh, H.; Akemann, W.; Gautam, S. G.; Dimitrov, D.; Iwamoto, Y.; Knopfel, T. Second and third generation voltage-sensitive fluorescent proteins for monitoring membrane potential. Front. Mol. Neurosci. 2009, 2, 5.CrossRefGoogle Scholar
  42. [42]
    Park, J.; Werley, C. A.; Venkatachalam, V.; Kralj, J. M.; Dib-Hajj, S. D.; Waxman, S. G.; Cohen, A. E. Screening fluorescent voltage indicators with spontaneously spiking HEK cells. PLoS One 2013, 8, e85221.CrossRefGoogle Scholar
  43. [43]
    Woodford, C. R.; Frady, E. P.; Smith, R. S.; Morey, B.; Canzi, G.; Palida, S. F.; Araneda, R. C.; Kristan, W. B. Jr.; Kubiak, C. P.; Miller, E. W. et al. Improved PeT molecules for optically sensing voltage in neurons. J. Am. Chem. Soc. 2015, 137, 1817–1824.CrossRefGoogle Scholar
  44. [44]
    Eckman, J. R.; Eaton, J. W. Dependence of plasmodial glutathione metabolism on the host cell. Nature 1979, 278, 754–756.CrossRefGoogle Scholar
  45. [45]
    Ballatori, N.; Krance, S. M.; Marchan, R.; Hammond, C. L. Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. Mol. Aspects Med. 2009, 30, 13–28.CrossRefGoogle Scholar
  46. [46]
    Homma, M.; Suzuki, H.; Kusuhara, H.; Naito, M.; Tsuruo, T.; Sugiyama, Y. High-affinity efflux transport system for glutathione conjugates on the luminal membrane of a mouse brain capillary endothelial cell line (MBEC4). J. Pharmacol. Exp. Ther. 1999, 288, 198–203.Google Scholar
  47. [47]
    Chanda, B.; Blunck, R.; Faria, L. C.; Schweizer, F. E.; Mody, I.; Bezanilla, F. A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci. 2005, 8, 1619–1626.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, CAS Center for Excellence in Brain ScienceSuzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of SciencesSuzhouChina
  2. 2.School of Nano Technology and Nano BionicsUniversity of Science and Technology of ChinaHefeiChina
  3. 3.College of Materials Sciences and Opto-Electronic TechnologyUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations