Nano Research

, Volume 12, Issue 3, pp 695–700 | Cite as

Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes

  • Aihua Jin
  • Mi-Ju Kim
  • Kug-Seung Lee
  • Seung-Ho YuEmail author
  • Yung-Eun SungEmail author
Research Article


Iron sulfides have been considered as one of the most promising candidates for sodium ion battery anode materials due to their high theoretical capacity and low cost. In this work, spindle-like Fe7S8 with nitrogen-doped carbon (Fe7S8/N-C) nanohybrids are successfully synthesized via a solvothermal method by sulfidation iron-based metal organic framework (FeMOF). As sodium ion battery anodes, Fe7S8/N-C nanohybrids exhibit high reversible capacity of 450.8 mAh·g−1 at 200 mA·g−1, and 406.7 mAh·g−1 at 500 mA·g−1 even after 500 cycles. They also show excellent rate properties and delivering the capacity of 327.8 mAh·g−1 at a very high current density of 3.2 A·g−1. These outstanding electrochemical performances can be attributed to the unique structure of Fe7S8/N-C nanohybrids. The nanoscale dimension in their size can be beneficial for facile ion and electron transports. Furthermore, the stable nitrogen doped carbon frameworks can also improve electrical conductivity and relieve the problems related to volume expansion. X-ray absorption spectroscopy and X-ray photoelectron spectroscopy analyses have been performed to study reactions occurred in spindle-like Fe7S8/N-C nanohybrid electrode at both bulk and surface.


sodium ion batteries iron sulfides metal organic frameworks X-ray absorption spectroscopy X-ray photoelectron spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Institute for Basic Science (IBS) in Korea and Y.-E. S. acknowledges the financial support by IBS-R006-A2. K. S. L. acknowledges the support by Nano-Material Fundamental Technology Development program (NRF-2018R1D1A1B07041997) through the National Research Foundation of Korea (NRF).

Supplementary material

12274_2019_2278_MOESM1_ESM.pdf (2.3 mb)
Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes


  1. [1]
    Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.CrossRefGoogle Scholar
  2. [2]
    Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.CrossRefGoogle Scholar
  3. [3]
    Yu, S. H.; Lee, S. H.; Lee, D. J.; Sung, Y. E.; Hyeon, T. Conversion reaction-based oxide nanomaterials for lithium ion battery anodes. Small 2016, 12, 2146–2172.CrossRefGoogle Scholar
  4. [4]
    Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.CrossRefGoogle Scholar
  5. [5]
    Peters, J.; Buchholz, D.; Passerini, S.; Weil, M. Life cycle assessment of sodium-ion batteries. Energy Environ. Sci. 2016, 9, 1744–1751.CrossRefGoogle Scholar
  6. [6]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  7. [7]
    Huang, Y. Y.; Zheng, Y. H.; Li, X.; Adams, F.; Luo, W.; Huang, Y. H.; Hu, L. B. Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 2018, 3, 1604–1612.CrossRefGoogle Scholar
  8. [8]
    Kim, M. K.; Yu, S. H.; Jin, A. H.; Kim, J.; Ko, I. H.; Lee, K. S.; Mun, J.; Sung, Y. E. Bismuth oxide as a high capacity anode material for sodium-ion batteries. Chem. Commun. 2016, 52, 11775–11778.CrossRefGoogle Scholar
  9. [9]
    Quan, B.; Jin, A. H.; Yu, S. H.; Kang, S. M.; Jeong, J.; Abruña, H. D.; Jin, L. Y.; Piao, Y. Z.; Sung, Y. E. Solvothermal-derived S-doped graphene as an anode material for sodium-ion batteries. Adv. Sci. 2018, 5, 1700880.CrossRefGoogle Scholar
  10. [10]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  11. [11]
    Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.CrossRefGoogle Scholar
  12. [12]
    Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.CrossRefGoogle Scholar
  13. [13]
    Kim, H.; Hong, J.; Park, Y. U.; Kim, J.; Hwang, I.; Kang, K. Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv. Funct. Mater. 2015, 25, 534–541.CrossRefGoogle Scholar
  14. [14]
    Jache, B.; Adelhelm, P. Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 2014, 53, 10169–10173.CrossRefGoogle Scholar
  15. [15]
    Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.CrossRefGoogle Scholar
  16. [16]
    Hu, Z.; Liu, Q. N.; Chou, S. L.; Dou, S. X. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv. Mater. 2017, 29, 1700606.CrossRefGoogle Scholar
  17. [17]
    Liu, Y. P.; He, X. Y.; Hanlon, D.; Harvey, A.; Coleman, J. N.; Li, Y. G. Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries. ACS Nano 2016, 10, 8821–8828.CrossRefGoogle Scholar
  18. [18]
    Choi, S. H.; Kang, Y. C. Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries. Nano Res. 2015, 8, 1595–1603.CrossRefGoogle Scholar
  19. [19]
    Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Layered SnS2reduced graphene oxide composite–a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854–3859.CrossRefGoogle Scholar
  20. [20]
    Peng, S. J.; Han, X. P.; Li, L. L.; Zhu, Z. Q.; Cheng, F. Y.; Srinivansan, M.; Adams, S.; Ramakrishna, S. Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 2016, 12, 1359–1368.CrossRefGoogle Scholar
  21. [21]
    Cho, J. S.; Park, J. S.; Kang, Y. C. Porous FeS nanofibers with numerous nanovoids obtained by Kirkendall diffusion effect for use as anode materials for sodium-ion batteries. Nano Res. 2017, 10, 897–907.CrossRefGoogle Scholar
  22. [22]
    Zhang, K.; Park, M.; Zhou, L. M.; Lee, G. H.; Shin, J.; Hu, Z.; Chou, S. L.; Chen, J.; Kang, Y. M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a high-performance anode material for sodium-ion batteries. Angew. Chem., Int. Ed. 2016, 55, 12822–12826.CrossRefGoogle Scholar
  23. [23]
    Douglas, A.; Carter, R.; Oakes, L.; Share, K.; Cohn, A. P.; Pint, C. L. Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries. ACS Nano 2015, 9, 11156–11165.CrossRefGoogle Scholar
  24. [24]
    Walter, M.; Zünd, T.; Kovalenko, M. V. Pyrite (FeS2) Nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 2015, 7, 9158–9163.CrossRefGoogle Scholar
  25. [25]
    Wei, X.; Li, W. H.; Shi, J. A.; Gu, L.; Yu, Y. FeS@C on carbon cloth as flexible electrode for both lithium and sodium storage. ACS Appl. Mater. Interfaces 2015, 7, 27804–27809.CrossRefGoogle Scholar
  26. [26]
    Shi, L. D.; Yu, J. L.; Liu, H. C.; Zhao, Y.; Xin, H. L.; Lin, Y. M.; Lin, C. D.; Li, C. H.; Zhu, C. Z. Uniform core-shell nanobiscuits of Fe7S8@C for lithium-ion and sodium-ion batteries with excellent performance. J. Mater. Chem. A 2018, 6, 7967–7976.CrossRefGoogle Scholar
  27. [27]
    Xiao, Y.; Hwang, J. Y.; Belharouak, I.; Sun, Y. K. Na storage capability investigation of a carbon nanotube-encapsulated Fe1-xS composite. ACS Energy Lett. 2017, 2, 364–372.CrossRefGoogle Scholar
  28. [28]
    Wu, Z. G.; Li, J. T.; Zhong, Y. J.; Liu, J.; Wang, K.; Guo, X. D.; Huang, L.; Zhong, B. H.; Sun, S. G. Synthesis of FeS@C-N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J. Alloys Compd. 2016, 688, 790–797.CrossRefGoogle Scholar
  29. [29]
    Li, Q. D.; Wei, Q. L.; Zuo, W. B.; Huang, L.; Luo, W.; An, Q. Y.; Pelenovich, V. O.; Mai, L. Q.; Zhang, Q. J. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160–164.CrossRefGoogle Scholar
  30. [30]
    Choi, M. J.; Kim, J.; Yoo, J. K.; Yim, S.; Jeon, J.; Jung, Y. S. Extremely small pyrrhotite Fe7S8 nanocrystals with simultaneous carbon-encapsulation for high-performance Na-ion batteries. Small 2018, 14, 1702816.CrossRefGoogle Scholar
  31. [31]
    Huang, Z. F.; Song, J. J.; Li, K.; Tahir, M.; Wang, Y. T.; Pan, L.; Wang, L.; Zhang, X. W.; Zou, J. J. Hollow cobalt-based bimetallic sulfide polyhedra for efficient all-pH-value electrochemical and photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2016, 138, 1359–1365.CrossRefGoogle Scholar
  32. [32]
    Pham, M. H.; Vuong, G. T.; Vu, A. T.; Do, T. O. Novel route to sizecontrolled Fe-MIL-88B-NH2 metal-organic framework nanocrystals. Langmuir 2011, 27, 15261–15267.CrossRefGoogle Scholar
  33. [33]
    Tan, Y. Z.; Wong, K. W.; Zhang, Z. L.; Ng, K. M. In situ synthesis of iron sulfide embedded porous carbon hollow spheres for sodium ion batteries. Nanoscale 2017, 9, 19408–19414.CrossRefGoogle Scholar
  34. [34]
    Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.CrossRefGoogle Scholar
  35. [35]
    Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Férey, G. A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem. Commun. 2006, 284–286.Google Scholar
  36. [36]
    Wang, Y.; Alsmeyer, D. C.; McCreery, R. L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557–563.CrossRefGoogle Scholar
  37. [37]
    Shimodaira, N.; Masui, A. Raman spectroscopic investigations of activated carbon materials. J. Appl. Phys. 2002, 92, 902–909.CrossRefGoogle Scholar
  38. [38]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.CrossRefGoogle Scholar
  39. [39]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.CrossRefGoogle Scholar
  40. [40]
    Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.CrossRefGoogle Scholar
  41. [41]
    Chen, S. C.; Kang, Z. X.; Zhang, X. D.; Xie, J. F.; Wang, H.; Shao, W.; Zheng, X. S.; Yan, W. S.; Pan, B. C.; Xie, Y. Highly active Fe sites in ultrathin pyrrhotite Fe7S8 nanosheets realizing efficient electro-catalytic oxygen evolution. ACS Cent. Sci. 2017, 3, 1221–1227.CrossRefGoogle Scholar
  42. [42]
    Pratt, A. R.; Muir, I. J.; Nesbitt, H. W. X-ray photoelectron and Auger electron spectroscopic studies of pyrrhotite and mechanism of air oxidation. Geochim. Cosmochim. Acta 1994, 58, 827–841.CrossRefGoogle Scholar
  43. [43]
    Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.CrossRefGoogle Scholar
  44. [44]
    Zhou, J. G.; Wang, J.; Sun, C. L.; Maley, J. M.; Sammynaiken, R.; Sham, T. K.; Pong, W. F. Nano-scale chemical imaging of a single sheet of reduced graphene oxide. J. Mater. Chem. 2011, 21, 14622–14630.CrossRefGoogle Scholar
  45. [45]
    Ehlert, C.; Unger, W. E. S.; Saalfrank, P. C K-edge NEXAFS spectra of graphene with physical and chemical defects: A study based on density functional theory. Phys. Chem. Chem. Phys. 2014, 16, 14083–14095.CrossRefGoogle Scholar
  46. [46]
    Hou, Z. F.; Wang, X. L.; Ikeda, T.; Terakura, K.; Oshima, M.; Kakimoto, M. A. Electronic structure of N-doped graphene with native point defects. Phys. Rev. B 2013, 87, 165401.CrossRefGoogle Scholar
  47. [47]
    Chen, Y. J.; Ji, S. F.; Wang, Y. G.; Dong, J. C.; Chen, W. X.; Li, Z.; Shen, R. A.; Zheng, L. R.; Zhuang, Z. B.; Wang, D. S. et al. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941.CrossRefGoogle Scholar
  48. [48]
    Zhu, Y. Q.; Sun, W. M.; Luo, J.; Chen, W. X.; Cao, T.; Zheng, L. R.; Dong, J. C.; Zhang, J.; Zhang, M. L.; Han, Y. H. et al. A cocoon silk chemistry strategy to ultrathin N-doped carbon nanosheet with metal single-site catalysts. Nat. Commun. 2018, 9, 3861.CrossRefGoogle Scholar
  49. [49]
    Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries. J. Power Sources 2014, 247, 391–395.CrossRefGoogle Scholar
  50. [50]
    Muthiah, A.; Baikie, T.; Shukla, S.; Ball, S.; Copley, M.; Hyde, T. I.; Du, Y. H.; Sankar, G.; Aravindan, V.; Srinivasan, M. Ex situ XAS investigation of effect of binders on electrochemical performance of Li2Fe(SO4)2 cathode. J. Mater. Chem. A 2017, 5, 19963–19971.CrossRefGoogle Scholar
  51. [51]
    Bodenes, L.; Darwiche, A.; Monconduit, L.; Martinez, H. The solid electrolyte interphase a key parameter of the high performance of Sb in sodium-ion batteries: Comparative X-ray photoelectron spectroscopy study of Sb/Na-ion and Sb/Li-ion batteries. J. Power Sources 2015, 273, 14–24.CrossRefGoogle Scholar
  52. [52]
    Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.CrossRefGoogle Scholar
  53. [53]
    Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M. et al. Controlling SEI formation on SnSb-porous carbon nanofibers for improved Na ion storage. Adv. Mater. 2014, 26, 2901–2908.CrossRefGoogle Scholar
  54. [54]
    Song, J. H.; Xiao, B. W.; Lin, Y. H.; Xu, K.; Li, X. L. Interphases in sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703082.CrossRefGoogle Scholar
  55. [55]
    Muñoz-Márquez, M. A.; Zarrabeitia, M.; Castillo-Martínez, E.; Eguía-Barrio, A.; Rojo, T.; Casas-Cabanas, M. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and Auger parameter analysis. ACS Appl. Mater. Interfaces 2015, 7, 7801–7808.CrossRefGoogle Scholar
  56. [56]
    Vogt, L. O.; El Kazzi, M.; Jämstorp Berg, E.; Pérez Villar, S.; Novák, P.; Villevieille, C. Understanding the interaction of the carbonates and binder in Na-ion batteries: A combined bulk and surface study. Chem. Mater. 2015, 27, 1210–1216.CrossRefGoogle Scholar
  57. [57]
    Jaumann, T.; Balach, J.; Klose, M.; Oswald, S.; Langklotz, U.; Michaelis, A.; Eckert, J.; Giebeler, L. SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: The role of electrode preparation, FEC addition and binders. Phys. Chem. Chem. Phys. 2015, 17, 24956–24967.CrossRefGoogle Scholar
  58. [58]
    Oltean, V. A.; Philippe, B.; Renault, S.; Duarte, R. F.; Rensmo, H.; Brandell, D. Investigating the interfacial chemistry of organic electrodes in Li-and Na-ion batteries. Chem. Mater. 2016, 28, 8742–8751.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Nanoparticle ResearchInstitute for Basic Science (IBS)SeoulRepublic of Korea
  2. 2.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.Beamline DepartmentPohang Accelerator Laboratory (PAL)PohangRepublic of Korea

Personalised recommendations