Nano Research

, Volume 12, Issue 3, pp 683–693 | Cite as

Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell

  • Bernd CermenekEmail author
  • Johanna Ranninger
  • Birgit Feketeföldi
  • Ilse Letofsky-Papst
  • Norbert Kienzl
  • Brigitte Bitschnau
  • Viktor HackerEmail author
Open Access
Research Article


The study focuses on the influence of Ni and Bi on alkaline ethanol oxidation reaction (EOR) activities, stabilities and structure characteristics of carbon supported Pd-based nanocatalysts (Pd/C, Pd60Ni40/C, Pd60Bi40/C, Pd60Ni20Bi20/C) by cyclic voltammetry/chronoamperometry using rotating disk electrode and various physico-chemical methods such as X-ray powder diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy and inductively coupled plasma optical emission spectrometry. Nickel generates more adsorbed OH on the Pd catalyst surface than Bi and promotes the oxidation of adsorbed ethanol species. This results in a low onset potential toward ethanol oxidation with high current density. The presence of Bi facilitates high tolerance toward various reaction intermediates resulting from the incomplete ethanol oxidation, but might also initiate the agglomeration of Pd nanoparticles. The novel Pd60Ni20Bi20/C nanocatalyst displays exceptional byproduct tolerance, but only satisfying catalytic activity toward ethanol oxidation in an alkaline medium. Therefore, the EOR performance of the novel carbon supported ternary PdxNiyBiz anode catalyst with various atomic variations (Pd70Ni25Bi5/C, Pd70Ni20Bi10/C, Pd80Ni10Bi10/C and Pd40Ni20Bi40/C) using the common instant reduction synthesis method was further optimized for the alkaline direct ethanol fuel cell. The carbon supported Pd:Ni:Bi nanocatalyst with atomic ratio of 70:20:10 displays outstanding catalytic activity for the alkaline EOR compared to the other PdxNiyBiz/C nanocatalysts as well as to the benchmarks Pd/C, Pd60Ni40/C and Pd60Bi40/C. The synergy and the optimal content in consideration of the oxide species of Pd, Ni and Bi are crucial for the EOR kinetic enhancement in alkaline medium.


alkaline direct ethanol fuel cell catalytic activity ethanol oxidation reaction ternary PdNiBi nanocatalysts structure characteristics 



Financial support from the Austrian Climate Energy Fund, Austrian Federal Ministry of Transport, Innovation and Technology (BMVIT), The Austrian Research Promotion Agency (FFG) through the program “Energy Mission Austria” and the IEA research cooperation are gratefully acknowledged. We thank Dr. Christian Palfinger for performing of the XPS analysis.

Supplementary material

12274_2019_2277_MOESM1_ESM.pdf (7.2 mb)
Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cell


  1. [1]
    An, L.; Zhao, T. S.; Li, Y. S. Carbon-neutral sustainable energy technology: Direct ethanol fuel cells. Renew. Sustain. Energy Rev. 2015, 50, 1462–1468.CrossRefGoogle Scholar
  2. [2]
    Zhang, Z. Y.; Xin, L.; Sun, K.; Li, W. Z. Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int. J. Hydrogen Energy 2011, 36, 12686–12697.CrossRefGoogle Scholar
  3. [3]
    Shen, S. Y.; Zhao, T. S.; Wu, Q. X. Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. Int. J. Hydrogen Energy 2012, 37, 575–582.CrossRefGoogle Scholar
  4. [4]
    Shen, S. Y.; Zhao, T. S.; Xu, J. B.; Li, Y. S. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J. Power Sources 2010, 195, 1001–1006.CrossRefGoogle Scholar
  5. [5]
    Zhao, T. S.; Li, Y. S.; Shen, S. Y. Anion-exchange membrane direct ethanol fuel cells: Status and perspective. Front. Energy Power Eng. China 2010, 4, 443–458.CrossRefGoogle Scholar
  6. [6]
    An, L.; Zhao, T. S. Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production. J. Power Sources 2017, 341, 199–211.CrossRefGoogle Scholar
  7. [7]
    Neto, A. O.; Tusi, M. M.; de Oliveira Polanco, N. S.; da Silva, S. G.; Santos, M. C.; Spinacé, E. V. PdBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 2011, 36, 10522–10526.CrossRefGoogle Scholar
  8. [8]
    Wu, Q. M.; Jiang, L. H.; Qi, L. T.; Yuan, L. Z.; Wang, E. D.; Sun, G. Q. Electrocatalytic activity and stability of Ag-MnOx/C composites toward oxygen reduction reaction in alkaline solution. Electrochim. Acta 2014, 123, 167–175.CrossRefGoogle Scholar
  9. [9]
    Wang, Y.; Shi, F. F.; Yang, Y. Y.; Cai, W. B. Carbon supported Pd-Ni-P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media. J. Power Sources 2013, 243, 369–373.CrossRefGoogle Scholar
  10. [10]
    Yu, E. H.; Wang, X.; Krewer, U.; Li, L.; Scott, K. Direct oxidation alkaline fuel cells: From materials to systems. Energy Environ. Sci. 2012, 5, 5668–5680.CrossRefGoogle Scholar
  11. [11]
    Kamarudin, M. Z. F.; Kamarudin, S. K.; Masdar, M. S.; Daud, W. R. W. Review: Direct ethanol fuel cells. Int. J. Hydrogen Energy 2013, 38, 9438–9453.CrossRefGoogle Scholar
  12. [12]
    Su, P. C.; Chen, H. S.; Chen, T. Y.; Liu, C. W.; Lee C. H.; Lee, J. F.; Chan, T. S.; Wang, K. W. Enhancement of electrochemical properties of Pd/C catalysts toward ethanol oxidation reaction in alkaline solution through Ni and Au alloying. Int. J. Hydrogen Energy 2013, 38, 4474–4482.CrossRefGoogle Scholar
  13. [13]
    Singh, R. N.; Anindita, A. S. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions. Carbon 2009, 47, 271–278.CrossRefGoogle Scholar
  14. [14]
    Ma, L.; Chu, D.; Chen, R. R. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int. J. Hydrogen Energy 2012, 37, 11185–11194.CrossRefGoogle Scholar
  15. [15]
    Geraldes, A. N.; da Silva, D. F.; Pino, E. S.; da Silva, J. C. M.; de Souza, R. F. B.; Hammer, P.; Spinacé, E. V.; Neto, A. O.; Linardi, M.; dos Santos, M. C. Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim. Acta 2013, 111, 455–465.CrossRefGoogle Scholar
  16. [16]
    Shen, P. K.; Xu, C. W. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem. Commun. 2006, 8, 184–188.CrossRefGoogle Scholar
  17. [17]
    Ma, L.; He, H.; Hsu, A.; Chen, R. R. PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. J. Power Sources 2013, 241, 696–702.CrossRefGoogle Scholar
  18. [18]
    Liang, Z. X.; Zhao, T. S.; Xu, J. B.; Zhu, L. D. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim. Acta 2009, 54, 2203–2208.CrossRefGoogle Scholar
  19. [19]
    Zhu, F. C.; Wang, M.; He, Y. W.; Ma, G. S.; Zhang, Z. H.; Wang, X. G. A comparative study of elemental additives (Ni, Co and Ag) on electrocatalytic activity improvement of PdSn-based catalysts for ethanol and formic acid electro-oxidation. Electrochim. Acta 2014, 148, 291–301.CrossRefGoogle Scholar
  20. [20]
    Moraes, L. P. R.; Matos, B. R.; Radtke, C.; Santiago, E. I.; Fonseca, F. C.; Amico, S. C.; Malfatti, C. F. Synthesis and performance of palladium-based electrocatalysts in alkaline direct ethanol fuel cell. Int. J. Hydrogen Energy 2016, 41, 6457–6468.CrossRefGoogle Scholar
  21. [21]
    Tusi, M. M.; Polanco, N. S. O.; da Silva, S. G.; Spinacé, E. V.; Neto, A. O. The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem. Commun. 2011, 13, 143–146.CrossRefGoogle Scholar
  22. [22]
    Nikiforova, T. G.; Datskevich, O. A.; Maleev, V. V. Palladium catalysts on porous nickel substrates for alcohol fuel cells. Russ. J. Appl. Chem. 2012, 85, 1871–1878.CrossRefGoogle Scholar
  23. [23]
    Yang, H. J.; Wang, H.; Li, H.; Ji, S.; Davids, M. W.; Wang, R. F. Effect of stabilizers on the synthesis of palladium-nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium. J. Power Sources 2014, 260, 12–18.CrossRefGoogle Scholar
  24. [24]
    Modibedi, R. M.; Masombuka, T.; Mathe, M. K. Carbon supported Pd–Sn and Pd–Ru–Sn nanocatalysts for ethanol electro-oxidation in alkaline medium. Int. J. Hydrogen Energy 2011, 36, 4664–4672.CrossRefGoogle Scholar
  25. [25]
    Shen, S. Y.; Zhao, T. S.; Xu, J. B.; Li, Y. S. High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anionexchange membrane direct ethanol fuel cells. Energy Environ. Sci. 2011, 4, 1428–1433.CrossRefGoogle Scholar
  26. [26]
    Dutta, A.; Datta, J. Outstanding catalyst performance of PdAuNi nanoparticles for the anodic reaction in an alkaline direct ethanol (with anion-exchange membrane) fuel cell. J. Phys. Chem. C 2012, 116, 25677–25688.CrossRefGoogle Scholar
  27. [27]
    Jiang, R. Z.; Tran, D. T.; McClure, J. P.; Chu, D. A class of (Pd–Ni–P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS Catal. 2014, 4, 2577–2586.CrossRefGoogle Scholar
  28. [28]
    Yi, Q. F.; Chu, H.; Chen, Q. H.; Yang, Z.; Liu, X. P. High performance Pd, PdNi, PdSn and PdSnNi nanocatalysts supported on carbon nanotubes for electrooxidation of C2–C4 alcohols. Electroanal 2015, 27, 388–397.CrossRefGoogle Scholar
  29. [29]
    Jongsomjit, S.; Prapainainar, P.; Sombatmankhong, K. Synthesis and characterisation of Pd–Ni–Sn electrocatalyst for use in direct ethanol fuel cells. Solid State Ioncs 2016, 288, 147–153.CrossRefGoogle Scholar
  30. [30]
    Jana, R.; Dhiman, S.; Peter, S. C. Facile solvothermal synthesis of highly active and robust Pd1.87Cu0.11Sn electrocatalyst towards direct ethanol fuel cell applications. Mater. Res. Express 2016, 3, 084001.CrossRefGoogle Scholar
  31. [31]
    Rostami, H.; Abdollahi, T.; Mehdipour, P.; Rostami, A. A.; Farmanzadeh, D. Effect of Ni addition on electrocatalytic activity of PdCu catalysts for ethanol electrooxidation: An experimental and theoretical study. Int. J. Hydrogen Energy 2017, 42, 24713–24725.CrossRefGoogle Scholar
  32. [32]
    Yang, H. L.; Yu, Z. N.; Li, S. W.; Zhang, Q. L.; Jin, J.; Ma, J. T. Ultrafine palladium-gold-phosphorus ternary alloyed nanoparticles anchored on ionic liquids-noncovalently functionalized carbon nanotubes with excellent electrocatalytic property for ethanol oxidation reaction in alkaline media. J. Catal. 2017, 353, 256–264.CrossRefGoogle Scholar
  33. [33]
    Zhang, Y. Y.; Yi, Q. F.; Deng, Z. L.; Zhou, X. L.; Nie, H. D. Excellent electroactivity of ternary Pd–Ag–Sn nanocatalysts for ethanol oxidation. Catal. Lett. 2018, 148, 1190–1201.CrossRefGoogle Scholar
  34. [34]
    Shu, Y. L.; Shi, X. Q.; Ji, Y. Y.; Wen, Y.; Guo, X. Y.; Ying, Y.; Wu, Y. P.; Yang, H. F. Hollow echinus-like PdCuCo alloy for superior efficient catalysis of ethanol. ACS Appl. Mater. Interfaces 2018, 10, 4743–4749.CrossRefGoogle Scholar
  35. [35]
    Huang, Y. Y.; Guo, Y. L.; Wang, Y. B.; Yao, J. N. Synthesis and performance of a novel PdCuPb/C nanocatalyst for ethanol electrooxidation in alkaline medium. Int. J. Hydrogen Energy 2014, 39, 4274–4281.CrossRefGoogle Scholar
  36. [36]
    Bambagioni, V.; Bianchini, C.; Filippi, J.; Oberhauser, W.; Marchionni, A.; Vizza, F.; Psaro, R.; Sordelli, L.; Foresti, M. L.; Innocenti, M. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. ChemSusChem 2009, 2, 99–112.CrossRefGoogle Scholar
  37. [37]
    Grimmer, C.; Grandi, M.; Zacharias, R.; Cermenek, B.; Weber, H.; Morais, C.; Napporn, T. W.; Weinberger, S.; Schenk, A.; Hacker, V. The electrooxidation of borohydride: A mechanistic study on palladium (Pd/C) applying RRDE, 11B-NMR and FTIR. Appl. Catal. B Environ. 2016, 180, 614–621.CrossRefGoogle Scholar
  38. [38]
    Reetz, M. T.; Lopez, M. Method for in situ immobilization of water-soluble nanodispersed metal oxide colloids. U.S. Patent 7,244,688, July 17, 2007.Google Scholar
  39. [39]
    Piasentin, R. M.; Spinacé, E. V.; Tusi, M. M.; Oliveira Neto, A. Preparation of PdPtSn/C-Sb2O5. SnO2 electrocatalysts by borohydride reduction for ethanol electro-oxidation in alkaline medium. Int. J. Electrochem. Sci. 2011, 6, 2255–2263.Google Scholar
  40. [40]
    Grimmer, C.; Zacharias, R.; Grandi, M.; Cermenek, B.; Schenk, A.; Weinberger, S.; Mautner, F. A.; Bitschnau, B.; Hacker, V. Carbon supported ruthenium as anode catalyst for alkaline direct borohydride fuel cells. J. Phys. Chem. C 2015, 119, 23839–23844.CrossRefGoogle Scholar
  41. [41]
    Grimmer, C.; Zacharias, R.; Grandi, M.; Pichler, B.; Kaltenboeck, I.; Gebetsroither, F.; Wagner, J.; Cermenek, B.; Weinberger, S.; Schenk, A. et al. A membrane-free and practical mixed electrolyte direct borohydride fuel cell. J. Electrochem. Soc. 2016, 163, F278–F283.CrossRefGoogle Scholar
  42. [42]
    Grimmer, C.; Grandi, M.; Zacharias, R.; Weinberger, S.; Schenk, A.; Aksamija, E.; Mautner, F. A.; Bitschnau, B.; Hacker, V. Carbon supported nanocrystalline manganese oxide: Surpassing platinum as oxygen reduction catalyst in direct borohydride fuel cells. J. Electrochem. Soc. 2016, 163, F885–F890.CrossRefGoogle Scholar
  43. [43]
    Cerritos, R. C.; Guerra-Balcázar, M.; Ramírez, R. F.; Ledesma-García, J.; Arriaga, L. G. Morphological effect of Pd catalyst on ethanol electro-oxidation reaction. Materials 2012, 5, 1686–1697.CrossRefGoogle Scholar
  44. [44]
    Wang, L. Q.; Lavacchi, A.; Bevilacqua, M.; Bellini, M.; Fornasiero, P.; Filippi, J.; Innocenti, M.; Marchionni, A.; Miller, H. A.; Vizza, F. Energy efficiency of alkaline direct ethanol fuel cells employing nanostructured palladium electrocatalysts. ChemCatChem 2015, 7, 2214–2221.CrossRefGoogle Scholar
  45. [45]
    Amin, R. S.; Abdel Hameed, R. M.; El-Khatib, K. M.; Elsayed Youssef, M. Electrocatalytic activity of nanostructured Ni and Pd-Ni on Vulcan XC-72R carbon black for methanol oxidation in alkaline medium. Int. J. Hydrogen Energy 2014, 39, 2026–2041.CrossRefGoogle Scholar
  46. [46]
    Simões, M.; Baranton, S.; Coutanceau, C. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 2010, 56, 580–591.CrossRefGoogle Scholar
  47. [47]
    Obradovic, M. D.; Stancic, Z. M.; Lacnjevac, U. C; Radmilovic, V. V.; Gavrilovic-Wohlmuther, A.; Radmilovic, V. R.; Gojkovic, S. L. Electrochemical oxidation of ethanol on palladium-nickel nanocatalyst in alkaline media. Appl. Catal. B Environ. 2016, 189, 110–118.CrossRefGoogle Scholar
  48. [48]
    Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique. J. Electrochem. Soc. 2015, 162, F1144–F1158.CrossRefGoogle Scholar
  49. [49]
    Pollet, B. G.; Goh, J. T. E. The importance of ultrasonic parameters in the preparation of fuel cell catalyst inks. Electrochim. Acta 2014, 128, 292–303.CrossRefGoogle Scholar
  50. [50]
    Casella, I. G.; Contursi, M. Characterization of bismuth adatom-modified palladium electrodes: The electrocatalytic oxidation of aliphatic aldehydes in alkaline solutions. Electrochim. Acta 2006, 52, 649–657.CrossRefGoogle Scholar
  51. [51]
    Sekol, R. C.; Carmo, M.; Kumar, G.; Gittleson, F.; Doubek, G.; Sun, K.; Schroers, J.; Taylor, A. D. Pd–Ni–Cu–P metallic glass nanowires for methanol and ethanol oxidation in alkaline media. Int. J. Hydrogen Energy 2013, 38, 11248–11255.CrossRefGoogle Scholar
  52. [52]
    Paschos, O.; Simonov, A. N.; Bobrovskaya, A. N.; Hantel, M.; Rzepka, M.; Dotzauer, P.; Popov, A. N.; Simonov, P. A.; Parmon, V. N.; Stimming, U. Bismuth modified Pd/C as catalysts for hydrogen related reactions. Electrochem. Commun. 2010, 12, 1490–1492.CrossRefGoogle Scholar
  53. [53]
    Hofstead-Duffy, A. M.; Chen, D. J.; Sun, S. G.; Tong, Y. J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to the current ratio criterion. J. Mater. Chem. 2012, 22, 5205–5208.CrossRefGoogle Scholar
  54. [54]
    Zhao, Y. Z.; Li, X. M.; Schechter, J. M.; Yang, Y. A. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. RSC Adv. 2016, 6, 5384–5390.CrossRefGoogle Scholar
  55. [55]
    Brouzgou, A.; Podias, A.; Tsiakaras, P. PEMFCs and AEMFCs directly fed with ethanol: A current status comparative review. J. Appl. Electrochem. 2013, 43, 119–136.CrossRefGoogle Scholar
  56. [56]
    Mondal, A.; De, A.; Datta, J. Cost effective and energy efficient catalytic support of Co and Ni in Pd matrix toward ethanol oxidation reaction: Product analysis and mechanistic interpretation. Appl. Catal. A: Gen. 2018, 561, 87–95.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit

Authors and Affiliations

  • Bernd Cermenek
    • 1
    Email author
  • Johanna Ranninger
    • 1
  • Birgit Feketeföldi
    • 2
  • Ilse Letofsky-Papst
    • 3
  • Norbert Kienzl
    • 4
  • Brigitte Bitschnau
    • 5
  • Viktor Hacker
    • 1
    Email author
  1. 1.Institute of Chemical Engineering and Environmental TechnologyGraz University of TechnologyGrazAustria
  2. 2.Institute for Surface Technologies and PhotonicsJOANNEUM RESEARCH Forschungsgesellschaft mbH/MaterialsWeizAustria
  3. 3.Institute for Electron Microscopy and Nanoanalysis and Center for Electron MicroscopyGraz University of TechnologyGrazAustria
  4. 4.Bioenergy 2020+ GmbHGrazAustria
  5. 5.Institute of Physical and Theoretical ChemistryGraz University of TechnologyGrazAustria

Personalised recommendations