Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures

  • Jingkai Qin
  • Hang Yan
  • Gang Qiu
  • Mengwei Si
  • Peng Miao
  • Yuqin Duan
  • Wenzhu Shao
  • Liang Zhen
  • Chengyan XuEmail author
  • Peide D YeEmail author
Research Article


The combination of mixed-dimensional semiconducting materials can provide additional freedom to construct integrated nanoscale electronic and optoelectronic devices with diverse functionalities. In this work, we report a high-performance dual-channel phototransistor based on one-dimensional (1D)/two-dimensional (2D) trigonal selenium (t-Se)/ReS2 heterostructures grown by chemical vapor deposition. The injection and separation efficiency of photogenerated electron–hole pairs can be greatly improved due to the high-quality interfacial contact between t-Se nanobelts and ReS2 films. Compared with bare ReS2 film devices, the dual-channel phototransistor based on t-Se/ReS2 heterostructure exhibits considerable enhancement with the responsivity (R) and detectivity (D*) up to 98 A·W–1 and 6 × 1010 Jones at 400 nm illumination with an intensity of 1.7 mW·cm−2, respectively. Besides, the response time can also be reduced by three times of magnitude to less than 50 ms due to the type-II band alignment at the interface. This study opens up a promising avenue for high-performance photodetectors by constructing mixed-dimensional heterostructures.


van der Waals heterostructures ReS2 trigonal selenium (t-Se) nanobelt phototransistor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work is in part supported by the National Natural Science Foundation of China (Nos. 51572057 and 51772064), AFOSR/NSF EFRI 2DARE program, ARO and SRC.

Supplementary material

12274_2019_2275_MOESM1_ESM.pdf (4 mb)
Hybrid dual-channel phototransistor based on 1D t-Se and 2D ReS2 mixed-dimensional heterostructures


  1. [1]
    Das, S.; Robinson, J. A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27.CrossRefGoogle Scholar
  2. [2]
    Jariwala, D.; Marks, T. J.; Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 2017, 16, 170–181.CrossRefGoogle Scholar
  3. [3]
    Gao, S. Y.; Yang, L.; Spataru, C. D. Interlayer coupling and gate-tunable excitons in transition metal dichalcogenide heterostructures. Nano Lett. 2017, 17, 7809–7813.CrossRefGoogle Scholar
  4. [4]
    Jin, C. H.; Kim, J.; Suh, J.; Shi, Z. W.; Chen, B.; Fan, X.; Kam, M.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Interlayer electron–phonon coupling in WSe2/hBN heterostructures. Nat. Phys. 2017, 13, 127–131.CrossRefGoogle Scholar
  5. [5]
    Li, Y.; Qin, J. K.; Xu, C. Y.; Cao, J.; Sun, Z. Y.; Ma, L. P.; Hu, P. A.; Ren, W. C.; Zhen, L. Electric field tunable interlayer relaxation process and interlayer coupling in WSe2/graphene heterostructures. Adv. Funct. Mater. 2016, 26, 4319–4328.CrossRefGoogle Scholar
  6. [6]
    Li, Y.; Xu, C. Y.; Qin, J. K.; Feng, W.; Wang, J. Y.; Zhang, S. Q.; Ma, L. P.; Cao, J.; Hu, P. A.; Ren, W. C. et al. Tuning the excitonic states in MoS2/ graphene van der Waals heterostructures via electrochemical gating. Adv. Funct. Mater. 2016, 26, 293–302.CrossRefGoogle Scholar
  7. [7]
    Kufer, D.; Konstantatos, G. Photo-FETs: Phototransistors enabled by 2D and 0D nanomaterials. ACS Photonics 2016, 3, 2197–2210.CrossRefGoogle Scholar
  8. [8]
    Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683–3689.CrossRefGoogle Scholar
  9. [9]
    Ra, H.-S.; Kwak, D.-H.; Lee, J.-S. A hybrid MoS2 nanosheet–CdSe nanocrystal phototransistor with a fast photoresponse. Nanoscale 2016, 8, 17223–17230.CrossRefGoogle Scholar
  10. [10]
    Schornbaum, J.; Winter, B.; Schieβl, S. P.; Gannott, F.; Katsukis, G.; Guldi, D. M.; Spiecker, E.; Zaumseil, J. Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 2014, 24, 5798–5806.CrossRefGoogle Scholar
  11. [11]
    Wen, Y.; Yin, L.; He, P.; Wang, Z. X.; Zhang, X. K.; Wang, Q. S.; Shifa, T. A.; Xu, K.; Wang, F. M.; Zhan, X. Y. et al. Integrated high-performance infrared phototransistor arrays composed of nonlayered PbS–MoS2 heterostructures with edge contacts. Nano Lett. 2016, 16, 6437–6444.CrossRefGoogle Scholar
  12. [12]
    Zheng, W.; Feng, W.; Zhang, X.; Chen, X. S.; Liu, G. B.; Qiu, Y. F.; Hasan, T.; Tan, P. H.; Hu, P. A. Anisotropic growth of nonlayered CdS on MoS2 monolayer for functional vertical heterostructures. Adv. Funct. Mater. 2016, 26, 2648–2654.CrossRefGoogle Scholar
  13. [13]
    Qin, J.-K.; Ren, D.-D.; Shao, W.-Z.; Li, Y.; Miao, P.; Sun, Z.-Y.; Hu, P. A.; Zhen, L.; Xu, C.-Y. Photoresponse enhancement in monolayer ReS2 phototransistor decorated with CdSe–CdS–ZnS quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 39456–39463.CrossRefGoogle Scholar
  14. [14]
    Li, Z. W.; Ye, R. Q.; Feng, R.; Kang, Y. M.; Zhu, X.; Tour, J. M.; Fang, Z. Y. Graphene quantum dots doping of MoS2 monolayers. Adv. Mater. 2015, 27, 5235–5240.CrossRefGoogle Scholar
  15. [15]
    Oakes, L.; Carter, R.; Hanken, T.; Cohn, A. P.; Share, K.; Schmidt, B.; Pint, C. L. Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity. Nat. Commun. 2016, 7, 11796.CrossRefGoogle Scholar
  16. [16]
    Ansari, S. A.; Cho, M. H. Simple and large scale construction of MoS2- gC3N4 heterostructures using mechanochemistry for high performance electrochemical supercapacitor and visible light photocatalytic applications. Sci. Rep. 2017, 7, 43055.CrossRefGoogle Scholar
  17. [17]
    Wu, L. M.; Guo, J.; Wang, Q. K.; Lu, S. B.; Dai, X. Y.; Xiang, Y. J.; Fan, D. Y. Sensitivity enhancement by using few-layer black phosphorusgraphene/ TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens. Actuators B: Chem. 2017, 249, 542–548.CrossRefGoogle Scholar
  18. [18]
    Li, M. Y.; Chen, C.-H.; Shi, Y. M.; Li, L.-J. Heterostructures based on two-dimensional layered materials and their potential applications. Mate. Today 2016, 19, 322–335.CrossRefGoogle Scholar
  19. [19]
    Pecora, E. F.; Sun, H. D.; Dal Negro, L.; Moustakas, T. D. Deep-UV optical gain in AlGaN-based graded-index separate confinement heterostructure. Opt. Mater. Express 2015, 5, 809–817.CrossRefGoogle Scholar
  20. [20]
    Kasap, S.; Frey, J. B.; Belev, G.; Tousignant, O.; Mani, H.; Laperriere, L.; Reznik, A.; Rowlands, J. A. Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Phys. Status Solidi B 2009, 246, 1794–1805.CrossRefGoogle Scholar
  21. [21]
    Qin, J. K.; Qiu, G.; Jian, J.; Zhou, H.; Yang, L. M.; Charnas, A.; Zemlyanov, D. Y.; Xu, C.-Y.; Xu, X. F.; Wu, W. Z. et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano 2017, 11, 10222–10229.CrossRefGoogle Scholar
  22. [22]
    Wang, K.; Chen, F.; Belev, G.; Kasap, S.; Karim, K. S. Lateral metalsemiconductor- metal photodetectors based on amorphous selenium. Appl. Phys. Lett. 2009, 95, 013505.CrossRefGoogle Scholar
  23. [23]
    Mukherjee, P.; Konar, S.; Gupta, B. C. Structural and electrical properties of selenium nanotubes. Phys. Lett. A 2016, 380, 238–241.CrossRefGoogle Scholar
  24. [24]
    Sridharan, K.; Ollakkan, M. S.; Philip, R.; Park, T. J. Non-hydrothermal synthesis and optical limiting properties of one-dimensional Se/C, Te/C and Se–Te/C core–shell nanostructures. Carbon 2013, 63, 263–273.CrossRefGoogle Scholar
  25. [25]
    Wang, R. P.; Su, X. Q.; Bulla, D.; Wang, T.; Gai, X.; Yang, Z. Y.; Madden, S.; Luther-Davies, B. Identifying the best chalcogenide glass compositions for the application in mid-infrared waveguides. In Proceedings Volume 9444, International Seminar on Photonics, Optics, and Its Applications, Bali, Indonesia, 2015.Google Scholar
  26. [26]
    Yang, W.; Hu, K.; Teng, F.; Weng, J. H.; Zhang, Y.; Fang, X. S. High-performance silicon-compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett. 2018, 18, 4697–4703.CrossRefGoogle Scholar
  27. [27]
    Gao, X. Y.; Gao, T.; Zhang, L. D. Solution–solid growth of α-monoclinic selenium nanowires at room temperature. J Mater. Chem. Mater. 2003, 13, 6–8.CrossRefGoogle Scholar
  28. [28]
    Luo, L. B.; Jie, J. S.; Chen, Z. H.; Zhang, X. J.; Fan, X.; Yuan, G. D.; He, Z. B.; Zhang, W. F.; Zhang, W. J.; Lee, S. T. Photoconductive properties of selenium nanowire photodetectors. J. Nanosci. Nanotechnol. 2009, 9, 6292–6298.CrossRefGoogle Scholar
  29. [29]
    Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.CrossRefGoogle Scholar
  30. [30]
    Ghoshal, D.; Yoshimura, A.; Gupta, T.; House, A.; Basu, S.; Chen, Y. W.; Wang, T. M.; Yang, Y.; Shou, W. J.; Hachtel, J. A. et al. Theoretical and experimental insight into the mechanism for spontaneous vertical growth of ReS2 nanosheets. Adv. Funct. Mater. 2018, 28, 1801286.CrossRefGoogle Scholar
  31. [31]
    Cui, F. F.; Wang, C.; Li, X. B.; Wang, G.; Liu, K. Q.; Yang, Z.; Feng, Q. L.; Liang, X.; Zhang, Z. Y.; Liu, S. Z. et al. Tellurium-assisted epitaxial growth of large-area, highly crystalline ReS2 atomic layers on mica substrate. Adv. Mater. 2016, 28, 5019–5024.CrossRefGoogle Scholar
  32. [32]
    Li, X. B.; Cui, F. F.; Feng, Q. L.; Wang, G.; Xu, X. S.; Wu, J. X.; Mao, N. N.; Liang, X.; Zhang, Z. Y.; Zhang, J. et al. Controlled growth of large-area anisotropic ReS2 atomic layer and its photodetector application. Nanoscale 2016, 8, 18956–18962.CrossRefGoogle Scholar
  33. [33]
    Qin, J. K.; Qiu, G.; He, W.; Jian, J.; Si, M.-W.; Duan, Y.-Q.; Charnas, A.; Zemlyanov, D. Y.; Wang, H.-Y.; Shao, W.-Z. et al. Epitaxial growth of 1D atomic chain based se nanoplates on monolayer ReS2 for high-performance photodetectors. Adv. Funct. Mater. 2018, 28, 1806254.CrossRefGoogle Scholar
  34. [34]
    Li, Y. T.; Huang, L.; Li, B.; Wang, X. T.; Zhou, Z. Q.; Li, J. B.; Wei, Z. M. Co-nucleus 1D/2D heterostructures with Bi2S3 nanowire and MoS2 monolayer: One-step growth and defect-induced formation mechanism. ACS Nano 2016, 10, 8938–8946.CrossRefGoogle Scholar
  35. [35]
    Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.; Ulstrup, S. Van der Waals epitaxy of two-dimensional MoS2–graphene heterostructures in ultrahigh vacuum. ACS Nano 2015, 9, 6502–6510.CrossRefGoogle Scholar
  36. [36]
    Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035–8041.CrossRefGoogle Scholar
  37. [37]
    Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.CrossRefGoogle Scholar
  38. [38]
    Suh, J.; Park, T. E.; Lin, D. Y.; Fu, D. Y.; Park, J.; Jung, H. J.; Chen, Y. B.; Ko, C.; Jang, C.; Sun, Y. H. et al. Doping against the native propensity of MoS2: Degenerate hole doping by cation substitution. Nano Lett. 2014, 14, 6976–6982.CrossRefGoogle Scholar
  39. [39]
    Joshi, S. S.; Lokhande, C. D. Fabrication of isotype (p-p) selenium-polyaniline heterojunction diode by electrochemical method. Appl. Surf. Sci. 2006, 252, 8539–8543.CrossRefGoogle Scholar
  40. [40]
    Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D–0D MoS2–PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180.CrossRefGoogle Scholar
  41. [41]
    Liu, Y. Y.; Wu, W. Z.; Goddard, W. A., III. Tellurium: Fast electrical and atomic transport along the weak interaction direction. J. Am. Chem. Soc. 2018, 140, 550–553.Google Scholar
  42. [42]
    Ren, L.; Zhang, H. Z.; Tan, P. H.; Chen, Y. F.; Zhang, Z. S.; Chang, Y. Q.; Xu, J.; Yang, F. H.; Yu, D. P. Hexagonal selenium nanowires synthesized via vapor-phase growth. J. Phys. Chem. B 2004, 108, 4627–4630.CrossRefGoogle Scholar
  43. [43]
    Liu, H. M.; Xu, B.; Liu, J. M.; Yin, J.; Miao, F.; Duan, C.-G.; Wan, X. G. Highly efficient and ultrastable visible-light photocatalytic water splitting over ReS2. Phys. Chem. Chem. Phys. 2016, 18, 14222–14227.CrossRefGoogle Scholar
  44. [44]
    Perini, C. A. R.; Barker, A, J.; Sala, M.; Petrozza, A.; Caironi, M. High speed solution-processed hybrid perovskite photodetectors with low dark current enabled by a low temperature metal oxide interlayer. Semicond. Sci. Technol. 2018, 33, 094004.CrossRefGoogle Scholar
  45. [45]
    Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840.CrossRefGoogle Scholar
  46. [46]
    Wang, Q. S.; Safdar, M.; Xu, K.; Mirza, M.; Wang, Z. X.; He, J. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets. ACS Nano 2014, 8, 7497–7505.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jingkai Qin
    • 1
    • 2
    • 3
  • Hang Yan
    • 1
    • 3
  • Gang Qiu
    • 2
  • Mengwei Si
    • 2
  • Peng Miao
    • 4
  • Yuqin Duan
    • 2
  • Wenzhu Shao
    • 3
  • Liang Zhen
    • 1
    • 3
  • Chengyan Xu
    • 1
    • 3
    Email author
  • Peide D Ye
    • 2
    Email author
  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  2. 2.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  4. 4.School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbinChina

Personalised recommendations