Nano Research

, Volume 12, Issue 3, pp 643–650 | Cite as

Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting

  • Hui Yang
  • Joeseph Bright
  • Sujan Kasani
  • Peng Zheng
  • Terence Musho
  • Banglin Chen
  • Ling HuangEmail author
  • Nianqiang WuEmail author
Research Article


This paper presents a p–n heterojunction photoanode based on a p-type porphyrin metal–organic framework (MOF) thin film and an n-type rutile titanium dioxide nanorod array for photoelectrochemical water splitting. The TiO2@MOF core–shell nanorod array is formed by coating an 8 nm thick MOF layer on a vertically aligned TiO2 nanorod array scaffold via a layer-by-layer self-assembly method. This vertically aligned core–shell nanorod array enables a long optical path length but a short path length for extraction of photogenerated minority charge carriers (holes) from TiO2 to the electrolyte. A p–n junction is formed between TiO2 and MOF, which improves the extraction of photogenerated electrons and holes out of the TiO2 nanorods. In addition, the MOF coating significantly improves the efficiency of charge injection at the photoanode/electrolyte interface. Introduction of Co(III) into the MOF layer further enhances the charge extraction in the photoanode and improves the charge injection efficiency. As a result, the photoelectrochemical cell with the TiO2@Co-MOF nanorod array photoanode exhibits a photocurrent density of 2.93 mA/cm2 at 1.23 V (vs. RHE), which is ~ 2.7 times the photocurrent achieved with bare TiO2 nanorod array under irradiation of an unfiltered 300 W Xe lamp with an output power density of 100 mW/cm2.


metal-organic framework water-splitting p–n junction photoanode titanium dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2019_2272_MOESM1_ESM.pdf (3.8 mb)
Metal–organic framework coated titanium dioxide nanorod array p–n heterojunction photoanode for solar water-splitting


  1. [1]
    Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.CrossRefGoogle Scholar
  2. [2]
    Kang, D.; Kim, T. W.; Kubota, S. R.; Cardiel, A. C.; Cha, H. G.; Choi, K. S. Electrochemical synthesis of photoelectrodes and catalysts for use in solar water splitting. Chem. Rev. 2015, 115, 12839–12887.CrossRefGoogle Scholar
  3. [3]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.CrossRefGoogle Scholar
  4. [4]
    Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 2012, 6, 511–518.CrossRefGoogle Scholar
  5. [5]
    Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.CrossRefGoogle Scholar
  6. [6]
    Katz, M. J.; Riha, S. C.; Jeong, N. C.; Martinson, A. B. F.; Farha, O. K.; Hupp, J. T. Toward solar fuels: Water splitting with sunlight and “rust”? Coord. Chem. Rev. 2012, 256, 2521–2529.Google Scholar
  7. [7]
    Mayer, M. T.; Du, C.; Wang, D. W. Hematite/sinanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J. Am. Chem. Soc. 2012, 134, 12406–12409.CrossRefGoogle Scholar
  8. [8]
    Chernomordik, B. D.; Russell, H. B.; Cvelbar, U.; Jasinski, J. B.; Kumar, V.; Deutsch, T.; Sunkara, M. K. Photoelectrochemical activity of as-grown, α-Fe2O3 nanowire array electrodes for water splitting. Nanotechnology 2012, 23, 194009.CrossRefGoogle Scholar
  9. [9]
    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294–2320.CrossRefGoogle Scholar
  10. [10]
    Zhang, Y. H.; Tang, Z. R.; Fu, X. Z.; Xu, Y. J. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? ACS Nano 2010, 4, 7303–7314.CrossRefGoogle Scholar
  11. [11]
    Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674.CrossRefGoogle Scholar
  12. [12]
    Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.CrossRefGoogle Scholar
  13. [13]
    Wang, W.; Xu, X. M.; Zhou, W.; Shao, Z. P. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 2017, 4, 1600371.CrossRefGoogle Scholar
  14. [14]
    Kuc, A.; Enyashin, A.; Seifert, G. Metal-organic frameworks: Structural, energetic, electronic, and mechanical properties. J. Phys. Chem. B 2007, 111, 8179–8186.CrossRefGoogle Scholar
  15. [15]
    Zhang, P.; Guan, B. Y.; Yu, L.; Lou, X. W. Facile synthesis of multi-shelled ZnS-CdS cages with enhanced photoelectrochemical performance for solar energy conversion. Chem 2018, 4, 162–173.CrossRefGoogle Scholar
  16. [16]
    Zhang, H. B.; Nai, J. W.; Yu, L.; Lou, X. W. Metal-organic-framework-based materials as platforms for renewable energy and environmental applications. Joule 2017, 1, 77–107.CrossRefGoogle Scholar
  17. [17]
    Wu, H. B.; Lou, X. W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges. Sci. Adv. 2017, 3, eaap9252.CrossRefGoogle Scholar
  18. [18]
    Wang, W.; Xu, X. M.; Zhou, W.; Shao, Z. P. Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 2017, 4: 1600371.CrossRefGoogle Scholar
  19. [19]
    Zhang, L. P.; Cui, P.; Yang, H. B.; Chen, J. Z.; Xiao, F. X.; Guo, Y. Y.; Liu, Y.; Zhang, W. N.; Huo, F. W.; Liu, B. Metal–organic frameworks as promising photosensitizers for photoelectrochemical water splitting. Adv. Sci. 2016, 3, 1500243.CrossRefGoogle Scholar
  20. [20]
    Dou, Y. B.; Zhou, J.; Zhou, A. W.; Li, J. R.; Nie, Z. R. Visible-light responsive MOF encapsulation of noble-metal-sensitized semiconductors for high-performance photoelectrochemical water splitting. J. Mater. Chem. A 2017, 5, 19491–19498.CrossRefGoogle Scholar
  21. [21]
    Otsuki, J. Supramolecular approach towards light-harvesting materials based on porphyrins and chlorophylls. J. Mater. Chem. A 2018, 6, 6710–6753.CrossRefGoogle Scholar
  22. [22]
    Gao, W. Y.; Chrzanowski, M.; Ma, S. Q. Metal-metalloporphyrin frameworks: A resurging class of functional materials. Chem. Soc. Rev. 2014, 43, 5841–5866.CrossRefGoogle Scholar
  23. [23]
    Zhao, M.; Ou, S.; Wu, C. D. Porous metal-organic frameworks for heterogeneous biomimetic catalysis. Acc. Chem. Res. 2014, 47, 1199–1207.CrossRefGoogle Scholar
  24. [24]
    Huh, S.; Kim, S. J.; Kim, Y. Porphyrinic metal-organic frameworks from custom-designed porphyrins. CrystEngComm 2016, 18, 345–368.CrossRefGoogle Scholar
  25. [25]
    Farha, O. K.; Shultz, A. M.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. Active-site-accessible, porphyrinic metal-organic framework materials. J. Am. Chem. Soc. 2011, 133, 5652–5655.CrossRefGoogle Scholar
  26. [26]
    Deria, P.; Bury, W.; Hupp, J. T.; Farha, O. K. Versatile functionalization of the NU-1000 platform by solvent-assisted ligand incorporation. Chem. Commun. 2014, 50, 1965–1968.CrossRefGoogle Scholar
  27. [27]
    So, M. C.; Jin, S. Y.; Son, H. J.; Wiederrecht, G. P.; Farha, O. K.; Hupp, J. T. Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks. J. Am. Chem. Soc. 2013, 135, 15698–15701.CrossRefGoogle Scholar
  28. [28]
    Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.CrossRefGoogle Scholar
  29. [29]
    Li, J. T.; Hoffmann, M. W. G.; Shen, H.; Fabrega, C.; Prades, J. D.; Andreu, T.; Hernandez-Ramirez, F.; Mathur, S. Enhanced photoelectrochemical activity of an excitonic staircase in CdS@TiO2 and CdS@anatase@rutile TiO2 heterostructures. J. Mater. Chem. 2012, 22, 20472–20476.CrossRefGoogle Scholar
  30. [30]
    Jiang, H. L.; Feng, D. W.; Wang, K. C.; Gu, Z. Y.; Wei, Z. W.; Chen, Y. P.; Zhou, H. C. An exceptionally stable, porphyrinic Zr metal-organic framework exhibiting pH-dependent fluorescence. J. Am. Chem. Soc. 2013, 135, 13934–13938.CrossRefGoogle Scholar
  31. [31]
    Yang, H.; Zhang, S. L.; Han, L. H.; Zhang, Z.; Xue, Z.; Gao, J.; Li, Y. J.; Huang, C. H.; Yi, Y. P.; Liu, H. B. et al. High conductive two-dimensional covalent organic framework for lithium storage with large capacity. ACS Appl. Mater. Interfaces 2016, 8, 5366–5375.CrossRefGoogle Scholar
  32. [32]
    Sarno, D. M.; Matienzo, L. J.; Jones, W. E. X-ray photoelectron spectroscopy as a probe of intermolecular interactions in porphyrin polymer thin films. Inorg. Chem. 2001, 40, 6308–6315.CrossRefGoogle Scholar
  33. [33]
    Fidalgo-Marijuan, A.; Barandika, G.; Bazán, B.; Urtiaga, M. K.; Arriortua, M. I. Self-assembly of iron TCPP (meso-tetra(4-carboxyphenyl)porphyrin) into a chiral 2D coordination polymer. Polyhedron 2011, 30, 2711–2716.CrossRefGoogle Scholar
  34. [34]
    Sonkar, P. K.; Prakash, K.; Yadav, M.; Ganesan, V.; Sankar, M.; Gupta, R.; Yadav, D. K. Co(II)-porphyrin-decorated carbon nanotubes as catalysts for oxygen reduction reactions: An approach for fuel cell improvement. J. Mater. Chem. A 2017, 5, 6263–6276.CrossRefGoogle Scholar
  35. [35]
    Meng, F. K.; Li, J. T.; Cushing, S. K.; Zhi, M. J.; Wu, N. Q. Solar hydrogen generation by nanoscale p–n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide. J. Am. Chem. Soc. 2013, 135, 10286–10289.CrossRefGoogle Scholar
  36. [36]
    Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.CrossRefGoogle Scholar
  37. [37]
    Zhou, M.; Bao, J.; Bi, W. T.; Zeng, Y. Q.; Zhu, R.; Tao, M. S.; Xie, Y. Efficient water splitting via a heteroepitaxial BiVO4 photoelectrode decorated with Co-Pi catalysts. ChemSusChem 2012, 5, 1420–1425.CrossRefGoogle Scholar
  38. [38]
    Shaban, M.; Rabia, M.; El-Sayed, A. M. A.; Ahmed, A.; Sayed, S. Photocatalytic properties of PbS/graphene oxide/polyaniline electrode for hydrogen generation. Sci. Rep. 2017, 7, 14100.CrossRefGoogle Scholar
  39. [39]
    Li, J. T.; Wu, N. Q. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384.CrossRefGoogle Scholar
  40. [40]
    Wang, W. H.; Dong, J. Y.; Ye, X. Z.; Li, Y.; Ma, Y. R.; Qi, L. M. Heterostructured TiO2 nanorod@nanobowl arrays for efficient photoelectrochemical water splitting. Small 2016, 12, 1469–1478.CrossRefGoogle Scholar
  41. [41]
    Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. D. Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano 2012, 6, 5060–5069.CrossRefGoogle Scholar
  42. [42]
    Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1–206.CrossRefGoogle Scholar
  43. [43]
    Goodman, A. M. A method for the measurement of short minority carrier diffusion lengths in semiconductors. J. Appl. Phys. 1961, 32, 2550–2552.CrossRefGoogle Scholar
  44. [44]
    Lagowski, J. Semiconductor surface spectroscopies: The early years. Surf. Sci. 1994, 299–300, 92–101.CrossRefGoogle Scholar
  45. [45]
    Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. J. Am. Chem. Soc. 2011, 133, 18370–18377.CrossRefGoogle Scholar
  46. [46]
    Yourey, J. E.; Pyper, K. J.; Kurtz, J. B.; Bartlett, B. M. Chemical stability of CuWO4 for photoelectrochemical water oxidation. J. Phys. Chem. C 2013, 117, 8708–8718.CrossRefGoogle Scholar
  47. [47]
    Nakazono, T.; Parent, A. R.; Sakai, K. Cobalt porphyrins as homogeneous catalysts for water oxidation. Chem. Commun. 2013, 49, 6325–6327.CrossRefGoogle Scholar
  48. [48]
    Abdi, F. F.; van de Krol, R. Nature and light dependence of bulk recombination in Co-Pi-catalyzed BiVO4 photoanodes. J. Phys. Chem. C 2012, 116, 9398–9404.CrossRefGoogle Scholar
  49. [49]
    Li, J. T.; Cushing, S. K.; Zheng, P.; Senty, T.; Meng, F. K.; Bristow, A. D.; Manivannan, A.; Wu, N. Q. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 2014, 136, 8438–8449.CrossRefGoogle Scholar
  50. [50]
    Li, J. T.; Cushing, S. K.; Zheng, P.; Meng, F. K.; Chu, D.; Wu, N. Q. Plasmon-induced photonic and energy-transfer enhancement of solar water splitting by a hematite nanorod array. Nat. Commun. 2013, 4, 2651.CrossRefGoogle Scholar
  51. [51]
    Schmuki, P.; Böhni, H.; Bardwell, J. A. In situ characterization of anodic silicon oxide films by Ac impedance measurements. J. Electrochem. Soc. 1995, 142, 1705–1712.CrossRefGoogle Scholar
  52. [52]
    Wafula, H.; Juma, A.; Sakwa, T.; Musembi, R.; Simiyu, J. A surface photovoltage study of surface defects on Co-doped TiO2 thin films deposited by spray pyrolysis. Coatings 2016, 6, 30.CrossRefGoogle Scholar
  53. [53]
    Ivanov, T.; Donchev, V.; Germanova, K.; Kirilov, K. A vector model for analysing the surface photovoltage amplitude and phase spectra applied to complicated nanostructures. J. Phys. D: Appl. Phys. 2009, 42, 135302.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hui Yang
    • 1
  • Joeseph Bright
    • 1
  • Sujan Kasani
    • 4
  • Peng Zheng
    • 1
  • Terence Musho
    • 1
  • Banglin Chen
    • 5
  • Ling Huang
    • 6
    Email author
  • Nianqiang Wu
    • 1
    • 2
    • 3
    Email author
  1. 1.Department of Mechanical and Aerospace EngineeringWest Virginia UniversityMorgantownUSA
  2. 2.C. Eugene Bennett Department of ChemistryWest Virginia UniversityMorgantownUSA
  3. 3.Department of Pharmaceutical ScienceWest Virginia UniversityMorgantownUSA
  4. 4.Lane Department of Computer Science and Electrical EngineeringWest Virginia UniversityMorgantownUSA
  5. 5.Department of ChemistryUniversity of Texas at San Antonio, One UTSA CircleSan AntonioUSA
  6. 6.Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)NanjingChina

Personalised recommendations