Advertisement

Exploiting oleic acid to prepare two-dimensional assembly of Si@graphitic carbon yolk-shell nanoparticles for lithium-ion battery anodes

  • Xiao Chen
  • Chen Chen
  • Yu Zhang
  • Xianfeng Zhang
  • Dong YangEmail author
  • Angang DongEmail author
Research Article
  • 25 Downloads

Abstract

Carbon coating has been a routine strategy for improving the performance of Si-based anode materials for lithium-ion batteries. The ability to tailor the thickness, homogeneity and graphitization degree of carbon-coating layers is essential for addressing issues that hamper the real applications of Si anodes. Herein, we report the construction of two-dimensional (2D) assemblies of interconnected Si@graphitic carbon yolk-shell nanoparticles (2D-Si@gC) from commercial Si powders by exploiting oleic acid (OA). The OA molecules act as both the surface-coating ligands for facilitating 2D nanoparticle assembly and the precursor for forming uniform and conformal graphitic shells as thin as 4 nm. The as-prepared 2D-Si@gC with rationally designed void space exhibits excellent rate capability and cycling stability when used as anode materials for lithium-ion batteries, delivering a capacity of 1,150 mAh·g−1 at an ultrahigh current density of 10 A·g−1 and maintaining a stabilized capacity of 1,275 mAh·g−1 after 200 cycles at 4 A·g−1. The formation of yolk-shell nanoparticles confines the deposition of solid electrolyte interphase (SEI) onto the outer carbon shell, while simultaneously providing sufficient space for volumetric expansion of Si nanoparticles. These attributes effectively mitigate the thickness variations of the entire electrode during repeated lithiation and delithiation, which combined with the unique 2D architecture and interconnected graphitic carbon shells of 2D-Si@gC contributes to its superior rate capability and cycling performance.

Keywords

oleic acid self-assembly graphitic carbon yolk-shell nanoparticles Si anodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

A. D. acknowledges the financial support from the National Natural Science Foundation of China (Nos. 21872038 and 21373052), MOST (No. 2017YFA0207303), and Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (No. 17JC1400100). D. Y. thanks to the National Natural Science Foundation of China (Nos. 51573030, 51573028 and 51773042).

Supplementary material

12274_2018_2270_MOESM1_ESM.pdf (2.8 mb)
Exploiting oleic acid to prepare two-dimensional assembly of Si@graphitic carbon yolk-shell nanoparticles for lithium-ion battery anodes

References

  1. [1]
    Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nat. Mater. 2005, 4, 805–818.CrossRefGoogle Scholar
  2. [2]
    Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.CrossRefGoogle Scholar
  3. [3]
    Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.CrossRefGoogle Scholar
  4. [4]
    Bie, Y. T.; Yu, J. L.; Yang, J.; Lu, W.; Nuli, Y.; Wang, J. L. Porous microspherical silicon composite anode material for lithium ion battery. Electrochim. Acta 2015, 178, 65–73.CrossRefGoogle Scholar
  5. [5]
    Bourderau, S.; Brousse, T.; Schleich, D. M. Amorphous silicon as a possible anode material for Li-ion batteries. J. Power Sources 1999, 81, 233–236.CrossRefGoogle Scholar
  6. [6]
    Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Sizedependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.CrossRefGoogle Scholar
  7. [7]
    Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.CrossRefGoogle Scholar
  8. [8]
    Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.CrossRefGoogle Scholar
  9. [9]
    Ryu, J.; Hong, D.; Lee. H. W.; Park. S. Practical considerations of Si-based anodes for lithium-ion battery applications. Nano Res. 2017, 10, 3970–4002.CrossRefGoogle Scholar
  10. [10]
    Casimir, A.; Zhang, H. G.; Ogoke, O.; Amine, J. C.; Lu, J.; Wu, G. Siliconbased anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation. Nano Energy 2016, 27, 359–376.CrossRefGoogle Scholar
  11. [11]
    Lu, Z. D.; Liu, N.; Lee, H. W.; Zhao, J.; Li, W. Y.; Li, Y. Z.; Cui, Y. Nonfilling carbon coating of porous silicon micrometer-sized particles for high-performance lithium battery anodes. ACS Nano 2015, 9, 2540–2547.CrossRefGoogle Scholar
  12. [12]
    Zhang, C. F.; Kang, T. H.; Yu, J. S. Three-dimensional spongy nanographenefunctionalized silicon anodes for lithium ion batteries with superior cycling stability. Nano Res. 2018, 11, 233–245.CrossRefGoogle Scholar
  13. [13]
    Kim, W. S.; Choi, J.; Hong, S. H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Res. 2016, 9, 2174–2181.CrossRefGoogle Scholar
  14. [14]
    Liu, X. H.; Zhang, J.; Si, W. P.; Xi, L. X.; Eichler, B.; Yan, C. L.; Schmidt, O. G. Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-ion batteries with long cycle life. ACS Nano 2015, 9, 1198–1205.CrossRefGoogle Scholar
  15. [15]
    Zhang, Y. G.; Du, N.; Zhu, S. J.; Chen, Y. F.; Lin, Y. F.; Wu, S. L.; Yang, D. R. Porous silicon in carbon cages as high-performance lithium-ion battery anode materials. Electrochim. Acta 2017, 252, 438–445.CrossRefGoogle Scholar
  16. [16]
    Xie, J.; Tong, L.; Su, L. W.; Xu, Y. W.; Wang, L. B.; Wang, Y. H. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J. Power Sources 2017, 342, 529–536.CrossRefGoogle Scholar
  17. [17]
    Liu, Y. J.; Tai, Z. X.; Zhou, T. F.; Sencadas, V.; Zhang, J.; Zhang, L.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. An all-integrated anode via interlinked chemical bonding between double-shelled-yolk-structured silicon and binder for lithium-ion batteries. Adv. Mater. 2017, 29, 1703028.CrossRefGoogle Scholar
  18. [18]
    Yang, L. Y.; Li, H. Z.; Liu, J. Sun, Z. Q.; Tang, S.; Lei, M. Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries. Sci. Rep. 2015, 5, 10908.CrossRefGoogle Scholar
  19. [19]
    Pan, L.; Wang, H. B.; Gao, D. C.; Chen, S. Y.; Tan, L.; Li, L. Facile synthesis of yolk-shell structured Si-C nanocomposites as anodes for lithium-ion batteries. Chem. Commun. 2014, 50, 5878–5880.CrossRefGoogle Scholar
  20. [20]
    Tao, H. C.; Fan, L. Z.; Song, W. L.; Wu, M.; He, X. B.; Qu, X. H. Hollow core-shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries. Nanoscale 2014, 6, 3138–3142.CrossRefGoogle Scholar
  21. [21]
    Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett. 2012, 12, 3315–3321.CrossRefGoogle Scholar
  22. [22]
    Zheng, J. H.; Guo, G. N.; Li, H. W.; Wang, L.; Wang, B. W.; Yu, H. J.; Yan, Y. C.; Yang, D.; Dong, A. G. Elaborately designed micro-mesoporous graphitic carbon spheres as efficient polysulfide reservoir for lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1105–1114.CrossRefGoogle Scholar
  23. [23]
    Li, Y. Z.; Yan, K.; Lee, H. W.; Lu, Z. D.; Liu, N.; Cui, Y. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 2016, 1, 15029.CrossRefGoogle Scholar
  24. [24]
    Zhao, Y. L. Bottom-up construction of highly ordered mesoporous graphene frameworks. Sci. Bull. 2015, 60, 1962–1963.CrossRefGoogle Scholar
  25. [25]
    Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.CrossRefGoogle Scholar
  26. [26]
    Zhai, W.; Ai, Q.; Chen, L. N; Wei, S. Y.; Li, D. P.; Zhang, L.; Si, P. C.; Feng, J. K.; Ci, L. J. Walnut-inspired microsized porous silicon/graphene core-shell composites for high-performance lithium-ion battery anodes. Nano Res. 2017, 10, 4274–4283.CrossRefGoogle Scholar
  27. [27]
    Lu, B.; Ma, B. J.; Deng, X. L.; Li, W. W.; Wu, Z. Y.; Shu, H. B.; Wang, X. Y. Cornlike ordered mesoporous silicon particles modified by nitrogen-doped carbon layer for the application of Li-ion battery. ACS Appl. Mater. Interfaces 2017, 9, 32829–32839.CrossRefGoogle Scholar
  28. [28]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.CrossRefGoogle Scholar
  29. [29]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater. 2018, 61, 1527–1535.CrossRefGoogle Scholar
  30. [30]
    Chan, C. K.; Peng, H. L.; Liu, G.; Mcilwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.CrossRefGoogle Scholar
  31. [31]
    Zhang, Y. C.; You, Y.; Xin, S.; Yin, Y. X.; Zhang, J.; Wang, P.; Zheng, X. S.; Cao, F. F.; Guo, Y. G. Rice husk-derived hierarchical silicon/nitrogendoped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 2016, 25, 120–127.CrossRefGoogle Scholar
  32. [32]
    Kanamura, K.; Shiraishi, S.; Takezawa, H.; Takehara, Z. I. XPS analysis of the surface of a carbon electrode intercalated by lithium ions. Chem. Mater. 1997, 9, 1797–1804.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecular ScienceFudan UniversityShanghaiChina
  2. 2.iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and Department of ChemistryFudan UniversityShanghaiChina

Personalised recommendations