Advertisement

Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives

  • Xiaolan Xue
  • Renpeng Chen
  • Changzeng Yan
  • Peiyang Zhao
  • Yi Hu
  • Wenjun Zhang
  • Songyuan Yang
  • Zhong JinEmail author
Review Article
  • 127 Downloads

Abstract

The ammonia synthesis from nitrogen and water under ambient conditions is one of the most inviting but challenging reaction routes. Although nitrogen is abundant in the atmosphere and the ammonia synthesis reaction is exothermic on the thermodynamics, the conversion of N2 to ammonia is actually hard to proceed owing to the chemical inertness and stability of N2 molecules. In industry, ammonia synthesis is carried out by the Haber-Bosch process under harsh conditions (300–500 °C, 20–30 MPa) associated with the requirement of substantial energy input and the enormous emission of greenhouse gases (e.g., CO2). Recently, a growing number of studies on photo(electro)catalytic and electrocatalytic nitrogen reduction reaction (NRR) in aqueous solution have attracted extensive attention, which holds great promise for nitrogen fixation under room temperature and atmospheric pressure. However, the very low efficiency and ambiguous mechanism still remain as the major hurdles for the development of photochemical and electrochemical NRR systems. Here we provide an overview of the latest progresses, remaining challenges and future prospects in photocatalytic and electrocatalytic nitrogen fixation. Moreover, this review offers a helpful guidance for the reasonable design of photocatalysts and electrocatalysts towards NRR by combining theory predictions and experiment results. We hope this review can stimulate more research interests in the relatively understudied but highly promising research field of NRR.

Keywords

heterogeneous catalysis nitrogen fixation ammonia synthesis photocatalytic electrocatalytic nitrogen reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0208200, 2016YFB0700600, and 2015CB659300), the National Natural Science Foundation of China (NSFC) (Nos. 21872069, 51761135104, and 21573108), the Natural Science Foundation of Jiangsu Province (Nos. BK20180008 and BK20150571), High-Level Entrepreneurial and Innovative Talents Program of Jiangsu Province, and the Fundamental Research Funds for the Central Universities of China (No. 020514380146).

References

  1. [1]
    Canfield, D. E.; Glazer, A. N.; Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 2010, 330, 192–196.CrossRefGoogle Scholar
  2. [2]
    Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041–4062.CrossRefGoogle Scholar
  3. [3]
    Thamdrup, B. New pathways and processes in the global nitrogen cycle. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 407–428.CrossRefGoogle Scholar
  4. [4]
    Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564.CrossRefGoogle Scholar
  5. [5]
    Bazhenova, T. A.; Shilov, A. E. Nitrogen fixation in solution. Coord. Chem. Rev. 1995, 144, 69–145.CrossRefGoogle Scholar
  6. [6]
    Tanaka, H.; Mori, H.; Seino, H.; Hidai, M.; Mizobe, Y.; Yoshizawa, K. DFT study on chemical N2 fixation by using a Cubane-type RuIr3S4 cluster: Energy profile for binding and reduction of N2 to ammonia via Ru−N−NHx (x = 1−3) intermediates with unique structures. J. Am. Chem. Soc. 2008, 130, 9037–9047.CrossRefGoogle Scholar
  7. [7]
    MacKay, B. A.; Fryzuk, M. D. Dinitrogen coordination chemistry: On the biomimetic borderlands. Chem. Rev. 2004, 104, 385–402.CrossRefGoogle Scholar
  8. [8]
    Gruber, N.; Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 2008, 451, 293–296.CrossRefGoogle Scholar
  9. [9]
    Connor, G. P.; Holland, P. L. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction. Catal. Today 2017, 286, 21–40.CrossRefGoogle Scholar
  10. [10]
    Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.CrossRefGoogle Scholar
  11. [11]
    Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The Haber–Bosch process revisited: On the real structure and stability of “ammonia iron” under working conditions. Angew. Chem., Int. Ed. 2013, 52, 12723–12726.CrossRefGoogle Scholar
  12. [12]
    Tanaka, H.; Nishibayashi, Y.; Yoshizawa, K. Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes. Acc. Chem. Res. 2016, 49, 987–995.CrossRefGoogle Scholar
  13. [13]
    Tanabe, Y.; Nishibayashi, Y. Developing more sustainable processes for ammonia synthesis. Coord. Chem. Rev. 2013, 257, 2551–2564.CrossRefGoogle Scholar
  14. [14]
    Howard, J. B.; Rees, D. C. Structural basis of biological nitrogen fixation. Chem. Rev. 1996, 96, 2965–2982.CrossRefGoogle Scholar
  15. [15]
    Rees, D. C.; Tezcan, F. A.; Haynes, C. A.; Walton, M. Y.; Andrade, S.; Einsle, O.; Howard, J. B. Structural basis of biological nitrogen fixation. Philos. Trans. Roy. Soc. A 2005, 363, 971–984.CrossRefGoogle Scholar
  16. [16]
    Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.CrossRefGoogle Scholar
  17. [17]
    Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.CrossRefGoogle Scholar
  18. [18]
    Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.CrossRefGoogle Scholar
  19. [19]
    Soria, J.; Conesa, J. C.; Augugliaro, V.; Palmisano, L.; Schiavello, M.; Sclafani, A. Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J. Phys. Chem. 1991, 95, 274–282.CrossRefGoogle Scholar
  20. [20]
    Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.CrossRefGoogle Scholar
  21. [21]
    Christianson, J. R.; Zhu, D.; Hamers, R. J.; Schmidt, J. R. Mechanism of N2 reduction to NH3 by aqueous solvated electrons. J. Phys. Chem. B 2013, 118, 195–203.CrossRefGoogle Scholar
  22. [22]
    Bauer, N. Theoretical pathways for the reduction of N2 molecules in aqueous media: Thermodynamics of N2H1 n. J. Phys. Chem. 1960, 64, 833–837.CrossRefGoogle Scholar
  23. [23]
    Shilov, A. E. Catalytic reduction of molecular nitrogen in solutions. Russ. Chem. Bull. 2003, 52, 2555–2562.CrossRefGoogle Scholar
  24. [24]
    Li, J.; Li, H.; Zhan, G. M.; Zhang, L. Z. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 2017, 50, 112–121.CrossRefGoogle Scholar
  25. [25]
    Li, L.; Wang, Y. C.; Vanka, S.; Mu, X. Y.; Mi, Z. T.; Li, C. J. Nitrogen photofixation over III-nitride nanowires assisted by ruthenium clusters of low atomicity. Angew. Chem. 2017, 129, 8827–8831.CrossRefGoogle Scholar
  26. [26]
    Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem., Int. Ed. 2018, 57, 122–138.CrossRefGoogle Scholar
  27. [27]
    Giddey, S.; Badwal, S. P. S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576–14594.CrossRefGoogle Scholar
  28. [28]
    Jewess, M.; Crabtree, R. H. Electrocatalytic nitrogen fixation for distributed fertilizer production. ACS Sustainable Chem. Eng. 2016, 4, 5855–5858.CrossRefGoogle Scholar
  29. [29]
    Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis–the selectivity challenge. ACS Catal. 2017, 7, 706–709.CrossRefGoogle Scholar
  30. [30]
    van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.CrossRefGoogle Scholar
  31. [31]
    Guo, C. X.; Ran, J. R.; Vasileff, A.; Qiao, S. Z. Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 2018, 11, 45–56.CrossRefGoogle Scholar
  32. [32]
    Hoffman, B. M.; Dean, D. R.; Seefeldt, L. C. Climbing nitrogenase: Toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res. 2009, 42, 609–619.CrossRefGoogle Scholar
  33. [33]
    Rod, T. H.; Logadottir, A.; Nørskov, J. K. Ammonia synthesis at low temperatures. J. Chem. Phys. 2000, 112, 5343–5347.CrossRefGoogle Scholar
  34. [34]
    Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.CrossRefGoogle Scholar
  35. [35]
    Abghoui, Y.; Garden, A. L.; Howalt, J. G.; Vegge, T.; kú lason, E. Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments. ACS Catal. 2016, 6, 635–646.CrossRefGoogle Scholar
  36. [36]
    Abghoui, Y.; Garden, A. L.; Hlynsson, V. F.; Björgvinsdóttir, S.; Ólafsdóttir, H.; Skúlason, E. Enabling electrochemical reduction of nitrogen to ammonia at ambient conditions through rational catalyst design. Phys. Chem. Chem. Phys. 2015, 17, 4909–4918.CrossRefGoogle Scholar
  37. [37]
    Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.CrossRefGoogle Scholar
  38. [38]
    Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 8, 2180–2186.CrossRefGoogle Scholar
  39. [39]
    Back, S.; Jung, Y. On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 2016, 18, 9161–9166.CrossRefGoogle Scholar
  40. [40]
    Matanović, I.; Garzon, F. H.; Henson, N. J. Electro-reduction of nitrogen on molybdenum nitride: Structure, energetics, and vibrational spectra from DFT. Phys. Chem. Chem. Phys. 2014, 16, 3014–3026.CrossRefGoogle Scholar
  41. [41]
    Azofra, L. M.; Li, N.; MacFarlane, D. R.; Sun, C. H. Promising prospects for 2D d2–d4 M3C2 transition metal carbides (MXenes) in N2 capture and conversion into ammonia. Energy Environ. Sci. 2016, 9, 2545–2549.CrossRefGoogle Scholar
  42. [42]
    Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520–7535.CrossRefGoogle Scholar
  43. [43]
    Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.CrossRefGoogle Scholar
  44. [44]
    Chu, S.; Li, W.; Yan, Y. F.; Hamann, T.; Shih, I.; Wang, D. W.; Mi, Z. T. Roadmap on solar water splitting: Current status and future prospects. Nano Futures 2017, 1, 022001.CrossRefGoogle Scholar
  45. [45]
    Chen, X. B.; Mao, S. S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959.CrossRefGoogle Scholar
  46. [46]
    Yang, W. L.; Zhang, X. D.; Xie, Y. Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today 2016, 11, 793–816.CrossRefGoogle Scholar
  47. [47]
    Guan, M. L.; Xiao, C.; Zhang, J.; Fan, S. J.; An, R.; Cheng, Q. M.; Xie, J. F.; Zhou, M.; Ye, B. J.; Xie, Y. Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. J. Am. Chem. Soc. 2013, 135, 10411–10417.CrossRefGoogle Scholar
  48. [48]
    Kubacka, A.; Fernández-García, M.; Colón, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 2012, 112, 1555–1614.CrossRefGoogle Scholar
  49. [49]
    Hou, W. B.; Cronin, S. B. A review of surface plasmon resonanceenhanced photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619.CrossRefGoogle Scholar
  50. [50]
    Schrauzer, G. N.; Guth, T. D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189–7193.CrossRefGoogle Scholar
  51. [51]
    Bourgeois, S.; Diakite, D.; Perdereau, M. A study of TiO2 powders as a support for the photochemical synthesis of ammonia. React. Solids 1988, 6, 95–104.CrossRefGoogle Scholar
  52. [52]
    Radford, P. P.; Francis, C. G. Photoreduction of nitrogen by metal doped titanium dioxide powders: A novel use for metal vapour techniques. J. Chem. Soc. Chem. Commun. 1983, 24, 1520–1521.CrossRefGoogle Scholar
  53. [53]
    Zhao, W. R.; Zhang, J.; Zhu, X.; Zhang, M.; Tang, J.; Tan, M.; Wang, Y. Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl. Catal., B Environ. 2014, 144, 468–477.CrossRefGoogle Scholar
  54. [54]
    Vettraino, M.; Trudeau, M.; Lo, A. Y. H.; Schurko, R. W.; Antonelli, D. Room-temperature ammonia formation from dinitrogen on a reduced mesoporous titanium oxide surface with metallic properties. J. Am. Chem. Soc. 2002, 124, 9567–9573.CrossRefGoogle Scholar
  55. [55]
    Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936.CrossRefGoogle Scholar
  56. [56]
    Yang, J. H.; Guo, Y. Z.; Jiang, R. B.; Qin, F.; Zhang, H.; Lu, W. Z.; Wang, J. F.; Yu, J. C. High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 2018, 140, 8497–8508.CrossRefGoogle Scholar
  57. [57]
    Ileperuma, O. A.; Tennakone, K.; Dissanayake, W. D. D. P. Photocatalytic behaviour of metal doped titanium dioxide: Studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems. Appl. Catal. 1990, 62, L1–L5.CrossRefGoogle Scholar
  58. [58]
    Palmisano, L.; Augugliaro, V.; Sclafani, A.; Schiavello, M. Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem. 1988, 92, 6710–6713.CrossRefGoogle Scholar
  59. [59]
    Ileperuma, O. A.; Thaminimulla, C. T. K.; Kiridena, W. C. B. Photoreduction of N2 to NH3 and H2O to H2 on metal doped TiO2 catalysts (M = Ce, V). Sol. Energy Mater. Sol. Cells 1993, 28, 335–343.CrossRefGoogle Scholar
  60. [60]
    Linnik, O. P.; Kisch, H. Dinitrogen photofixation at ruthenium-modified titania films. Mendeleev Commun. 2008, 18, 10–11.CrossRefGoogle Scholar
  61. [61]
    Rusina, O.; Eremenko, A.; Frank, G.; Strunk, H. P.; Kisch, H. Nitrogen photofixation at nanostructured iron titanate films. Angew. Chem., Int. Ed. 2001, 40, 3993–3995.CrossRefGoogle Scholar
  62. [62]
    Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.CrossRefGoogle Scholar
  63. [63]
    Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.CrossRefGoogle Scholar
  64. [64]
    Rao, N. N.; Dube, S.; Manjubala, Natarajan, P. Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts. Appl. Catal. B Environ. 1994, 5, 33–42.CrossRefGoogle Scholar
  65. [65]
    Ranjit, K. T.; Varadarajan, T. K.; Viswanathan, B. Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. J. Photochem. Photobiol. A Chem. 1996, 96, 181–185.CrossRefGoogle Scholar
  66. [66]
    Tennakone, K.; Wickramanayake, S.; Fernando, C. A. N.; Ileperuma, O. A.; Punchihewa, S. Photocatalytic nitrogen reduction using visible light. J. Chem. Soc. Chem. Commun. 1987, 14, 1078–1080.CrossRefGoogle Scholar
  67. [67]
    Lashgari, M.; Zeinalkhani, P. Photocatalytic N2 conversion to ammonia using efficient nanostructured solar-energy-materials in aqueous media: A novel hydrogenation strategy and basic understanding of the phenomenon. Appl. Catal. A Gen. 2017, 529, 91–97.CrossRefGoogle Scholar
  68. [68]
    Khader, M. M.; Lichtin, N. N.; Vurens, G. H.; Salmeron, M.; Somorjai, G. A. Photoassisted catalytic dissociation of water and reduction of nitrogen to ammonia on partially reduced ferric oxide. Langmuir 1987, 3, 303–304.CrossRefGoogle Scholar
  69. [69]
    Ileperuma, O. A.; Kiridena, W. C. B.; Dissanayake, W. D. D. Photoreduction of nitrogen and water on montmorillonite clays loaded with hydrous ferric oxide. J. Photochem. Photobiol. A Chem. 1991, 59, 191–197.CrossRefGoogle Scholar
  70. [70]
    Hoshino, K.; Kuchii, R.; Ogawa, T. Dinitrogen photofixation properties of different titanium oxides in conducting polymer/titanium oxide hybrid systems. Appl. Catal. B Environ. 2008, 79, 81–88.CrossRefGoogle Scholar
  71. [71]
    Tennakone, K.; Fernando, C. A. N.; Wickramanayake, S.; Damayanthi, M. W. P.; Silva, L. H. K.; Wijeratne, W.; Illeperuma, O. A.; Punchihewa, S. Photocatalytic reduction of nitrogen to ammonia with coprecipitated Fe(III) and Ti(IV) hydrous oxides. Sol. Energy Mater. 1988, 17, 47–53.CrossRefGoogle Scholar
  72. [72]
    Tennakone, K.; Thaminimulla, C. T. K.; Bandara, J. M. S. Nitrogen photoreduction by vanadium(III)-substituted hydrous ferric oxide. J. Photochem. Photobiol. A Chem. 1992, 68, 131–135.CrossRefGoogle Scholar
  73. [73]
    Tennakone, K.; Thaminimulla, C. T. K.; Kiridena, W. C. B. Nitrogen photoreduction by coprecipitated hydrous oxides of samarium(III) and vanadium(III). Langmuir 1993, 9, 723–726.CrossRefGoogle Scholar
  74. [74]
    Tennakone, K.; Punchihewa, S.; Tantrigoda, R. Nitrogen photoreduction with cuprous chloride coated hydrous cuprous oxide. Sol. Energy Mater. 1989, 18, 217–221.CrossRefGoogle Scholar
  75. [75]
    Li, X. M.; Wang, W. Z.; Jiang, D.; Sun, S. M.; Zhang, L.; Sun, X. Efficient solar-driven nitrogen fixation over carbon–tungstic-acid hybrids. Chem. -Eur. J. 2016, 22, 13819–13822.CrossRefGoogle Scholar
  76. [76]
    Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.CrossRefGoogle Scholar
  77. [77]
    Sun, S. M.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard III, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201–209.CrossRefGoogle Scholar
  78. [78]
    Hao, Y. C.; Dong, X. L.; Zhai, S. R.; Ma, H. C.; Wang, X. Y.; Zhang, X. F. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem. -Eur. J. 2016, 22, 18722–18728.CrossRefGoogle Scholar
  79. [79]
    Mi, Y.; Zhou, M.; Wen, L. Y.; Zhao, H. P.; Lei, Y. A highly efficient visible-light driven photocatalyst: Two dimensional square-like bismuth oxyiodine nanosheets. Dalton Trans. 2014, 43, 9549–9556.CrossRefGoogle Scholar
  80. [80]
    Bhachu, D. S.; Moniz, S. J. A.; Sathasivam, S.; Scanlon, D. O.; Walsh, A.; Bawaked, S. M.; Mokhtar, M.; Obaid, A. Y.; Parkin, I. P.; Tang, J. W. et al. Bismuth oxyhalides: Synthesis, structure and photoelectrochemical activity. Chem. Sci. 2016, 7, 4832–4841.CrossRefGoogle Scholar
  81. [81]
    Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.CrossRefGoogle Scholar
  82. [82]
    Li, H.; Shang, J.; Shi, J. G.; Zhao, K.; Zhang, L. Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 2016, 8, 1986–1993.CrossRefGoogle Scholar
  83. [83]
    Wang, S. Y.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y. G.; Meng, X. G.; Yang, Z. X.; Chen, H.; Ye, J. H. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 2017, 29, 1701774.CrossRefGoogle Scholar
  84. [84]
    Bai, Y.; Ye, L. Q.; Chen, T.; Wang, L.; Shi, X.; Zhang, X.; Chen, D. Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl. Mater. Interfaces 2016, 8, 27661–27668.CrossRefGoogle Scholar
  85. [85]
    Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.CrossRefGoogle Scholar
  86. [86]
    Naseri, A.; Samadi, M.; Pourjavadi, A.; Moshfegh, A. Z.; Ramakrishna, S. Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: Recent advances and future development directions. J. Mater. Chem. A 2017, 5, 23406–23433.CrossRefGoogle Scholar
  87. [87]
    Dong, G. H.; Ho, W.; Wang, C. Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 2015, 3, 23435–23441.CrossRefGoogle Scholar
  88. [88]
    Wu, G.; Gao, Y.; Zheng, B. H. Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies. Ceram. Int. 2016, 42, 6985–6992.CrossRefGoogle Scholar
  89. [89]
    Ma, H. Q.; Shi, Z. Y.; Li, S.; Liu, N. Large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability via a convenient microwave treatment. Appl. Surf. Sci. 2016, 379, 309–315.CrossRefGoogle Scholar
  90. [90]
    Ma, H. Q.; Shi, Z. Y.; Li, Q.; Li, S. Preparation of graphitic carbon nitride with large specific surface area and outstanding N2 photofixation ability via a dissolve-regrowth process. J. Phys. Chem. Solids 2016, 99, 51–58.CrossRefGoogle Scholar
  91. [91]
    Li, S. J.; Chen, X.; Hu, S. Z.; Li, Q.; Bai, J.; Wang, F. Infrared ray assisted microwave synthesis: A convenient method for large-scale production of graphitic carbon nitride with outstanding nitrogen photofixation ability. RSC Adv. 2016, 6, 45931–45937.CrossRefGoogle Scholar
  92. [92]
    Hu, S. Z.; Chen, X.; Li, Q.; Li, F. Y.; Fan, Z. P.; Wang, H.; Wang, Y. J.; Zheng, B. H.; Wu, G. Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Appl. Catal. B Environ. 2017, 201, 58–69.CrossRefGoogle Scholar
  93. [93]
    Li, X. M.; Sun, X.; Zhang, L.; Sun, S. M.; Wang, W. Z. Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4. J. Mater. Chem. A 2018, 6, 3005–3011.CrossRefGoogle Scholar
  94. [94]
    Shiraishi, Y.; Shiota, S.; Kofuji, Y.; Hashimoto, M.; Chishiro, K.; Hirakawa, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency. ACS Appl. Energy Mater. 2018, 1, 4169–4177.CrossRefGoogle Scholar
  95. [95]
    Liu, Q. X.; Ai, L. H.; Jiang, J. MXene-derived TiO2@C/g-C3N4 heterojunctions for highly efficient nitrogen photofixation. J. Mater. Chem. A 2018, 6, 4102–4110.CrossRefGoogle Scholar
  96. [96]
    Miyama, H.; Fujii, N.; Nagae, Y. Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen. Chem. Phys. Lett. 1980, 74, 523–524.CrossRefGoogle Scholar
  97. [97]
    Ye, L. Q.; Han, C. Q.; Ma, Z. Y.; Leng, Y. M.; Li, J.; Ji, X. X.; Bi, D. Q.; Xie, H. Q.; Huang, Z. X. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chem. Eng. J. 2017, 307, 311–318.CrossRefGoogle Scholar
  98. [98]
    Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B Environ. 2017, 200, 323–329.CrossRefGoogle Scholar
  99. [99]
    Hu, S. Z.; Chen, X.; Li, Q.; Zhao, Y. F.; Mao, W. Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 2016, 6, 5884–5890.CrossRefGoogle Scholar
  100. [100]
    Cao, Y. H.; Hu, S. Z.; Li, F. Y.; Fan, Z. P.; Bai, J.; Lu, G.; Wang, Q. Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. RSC Adv. 2016, 6, 49862–49867.CrossRefGoogle Scholar
  101. [101]
    Tennakone, K.; Bandara, J. M. S.; Thaminimulla, C. T. K.; Jayatilake, W. D. W.; Ketipearachchi, U. S.; Ileperuma, O. A.; Priyadarshana, M. K. A. Photoreduction of dinitrogen to ammonia by ultrafine particles of iron hydroxide oxide (Fe(O)OH) formed by photohydrolysis of iron(II) bicarbonate. Langmuir 1991, 7, 2166–2168.CrossRefGoogle Scholar
  102. [102]
    Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered-doublehydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.CrossRefGoogle Scholar
  103. [103]
    Xu, C. M.; Qiu, P. X.; Li, L. Y.; Chen, H.; Jiang, F.; Wang, X. Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2018, 10, 25321–25328.CrossRefGoogle Scholar
  104. [104]
    Chen, H. M.; Chen, C. K.; Liu, R. S.; Zhang, L.; Zhang, J. J.; Wilkinson, D. P. Nano-architecture and material designs for water splitting photoelectrodes. Chem. Soc. Rev. 2012, 41, 5654–5671.CrossRefGoogle Scholar
  105. [105]
    Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J. Y.; Zou, Z. G. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347–370.CrossRefGoogle Scholar
  106. [106]
    Oshikiri, T.; Ueno, K.; Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem., Int. Ed. 2014, 53, 9802–9805.CrossRefGoogle Scholar
  107. [107]
    Oshikiri, T.; Ueno, K.; Misawa, H. Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. 2016, 128, 4010–4014.CrossRefGoogle Scholar
  108. [108]
    Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon–enhanced TiO2 photoelectrodes. Angew. Chem., Int. Ed. 2018, 57, 5278–5282.CrossRefGoogle Scholar
  109. [109]
    Ali, M.; Zhou, F. L.; Chen, K.; Kotzur, C.; Xiao, C. L.; Bourgeois, L.; Zhang, X. Y.; MacFarlane, D. R. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 2016, 7, 11335.CrossRefGoogle Scholar
  110. [110]
    Pickett, C. J.; Talarmin, J. Electrosynthesis of ammonia. Nature 1985, 317, 652–653.CrossRefGoogle Scholar
  111. [111]
    Furuya, N.; Yoshiba, H. Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst. J. Electroanal. Chem. Int. Electrochem. 1990, 291, 269–272.CrossRefGoogle Scholar
  112. [112]
    Kordali, V.; Kyriacou, G.; Lambrou, C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem. Commun. 2000, 17, 1673–1674.CrossRefGoogle Scholar
  113. [113]
    Kugler, K.; Luhn, M.; Schramm, J. A.; Rahimi, K.; Wessling, M. Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis. Phys. Chem. Chem. Phys. 2015, 17, 3768–3782.CrossRefGoogle Scholar
  114. [114]
    Liu, H. M.; Han, S. H.; Zhao, Y.; Zhu, Y. Y.; Tian, X. L.; Zeng, J. H.; Jiang, J. X.; Xia, B. Y.; Chen, Y. Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. J. Mater. Chem. A 2018, 6, 3211–3217.CrossRefGoogle Scholar
  115. [115]
    Lan, R.; Tao, S. W. Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv. 2013, 3, 18016–18021.CrossRefGoogle Scholar
  116. [116]
    Lan, R.; Irvine, J. T. S.; Tao, S. W. Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci. Rep. 2013, 3, 1145.CrossRefGoogle Scholar
  117. [117]
    Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.CrossRefGoogle Scholar
  118. [118]
    Nazemi, M.; Panikkanvalappil, S. R.; El-Sayed, M. A. Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages. Nano Energy 2018, 49, 316–323.CrossRefGoogle Scholar
  119. [119]
    Shi, M. M.; Bao, D.; Wulan, B. R.; Li, Y. H.; Zhang, Y. F.; Yan, J. M.; Jiang, Q. Au sub-nanoclusters on TiO2 toward highly efficient and selective electrocatalyst for N2 conversion to NH3 at ambient conditions. Adv. Mater. 2017, 29, 1606550.CrossRefGoogle Scholar
  120. [120]
    Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan J. M.; Jiang, Q. Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.CrossRefGoogle Scholar
  121. [121]
    Wang, J.; Yu, L.; Hu, L.; Chen, G.; Xin, H. L.; Feng, X. F. Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential. Nat. Commun. 2018, 9, 1795.CrossRefGoogle Scholar
  122. [122]
    Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.CrossRefGoogle Scholar
  123. [123]
    Yang, D. S.; Chen, T.; Wang, Z. J. Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm. J. Mater. Chem. A 2017, 5, 18967–18971.CrossRefGoogle Scholar
  124. [124]
    Kim, K.; Lee, N.; Yoo, C. Y.; Kim, J. N.; Yoon, H. C.; Han, J. I. Communication-electrochemical reduction of nitrogen to ammonia in 2-propanol under ambient temperature and pressure. J. Electrochem. Soc. 2016, 163, F610–F612.CrossRefGoogle Scholar
  125. [125]
    Ding, K. L.; Gulec, A.; Johnson, A. M.; Schweitzer, N. M.; Stucky, G. D.; Marks, L. D.; Stair, P. C. Identification of active sites in CO oxidation and water–gas shift over supported Pt catalysts. Science 2015, 350, 189–192.CrossRefGoogle Scholar
  126. [126]
    Jones, J.; Xiong, H. F.; DeLaRiva, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernández, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.CrossRefGoogle Scholar
  127. [127]
    Zhao, J. X.; Chen, Z. F. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: A computational study. J. Am. Chem. Soc. 2017, 139, 12480–12487.CrossRefGoogle Scholar
  128. [128]
    Geng, Z. G.; Liu, Y.; Kong, X. D.; Li, P.; Li, K.; Liu, Z. Y.; Du, J. J.; Shu, M.; Si, R.; Zeng, J. Achieving a record–high yield rate of 120.9 μgNH3·mgcat. −1·h−1 for N2 electrochemical reduction over Ru single–atom catalysts. Adv. Mater. 2018, 30, 1803498.CrossRefGoogle Scholar
  129. [129]
    Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.CrossRefGoogle Scholar
  130. [130]
    Lv, C. D.; Qian, Y. M.; Yan, C. S.; Ding, Y.; Liu, Y. Y.; Chen, G.; Yu, G. H. Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250.CrossRefGoogle Scholar
  131. [131]
    Mukherjee, S.; Cullen, D. A.; Karakalos, S.; Liu, K. X.; Zhang, H.; Zhao, S.; Xu, H.; More, K. L.; Wang, G. F.; Wu, G. Metal-organic frameworkderived nitrogen-doped highly disordered carbon for electrochemical ammonia synthesis using N2 and H2O in alkaline electrolytes. Nano Energy 2018, 48, 217–226.CrossRefGoogle Scholar
  132. [132]
    Yang, X. X.; Li, K.; Cheng, D. M.; Pang, W. L.; Lv, J. Q.; Chen, X. Y.; Zhang, H. Y.; Wu, X. L.; Tan, H. Q.; Wang, Y. H. et al. Nitrogen-doped porous carbon: Highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction. J. Mater. Chem. A 2018, 6, 7762–7769.CrossRefGoogle Scholar
  133. [133]
    Yu, X. M.; Han, P.; Wei, Z. X.; Huang, L. S.; Gu, Z. X.; Peng, S. J.; Ma, J. M.; Zheng, G. F. Boron-doped graphene for electrocatalytic N2 reduction. Joule 2018, 2, 1610–1622.CrossRefGoogle Scholar
  134. [134]
    Qiu, W. B.; Xie, X. Y.; Qiu, J. D.; Fang, W. H.; Liang, R. P.; Ren, X.; Ji, X. Q.; Cui, G. W.; Asiri, A. M.; Cui, G. L. et al. High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst. Nat. Commun. 2018, 9, 3485.CrossRefGoogle Scholar
  135. [135]
    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. 2017, 129, 2743–2747.CrossRefGoogle Scholar
  136. [136]
    Xiang, X. J.; Wang, Z.; Shi, X. F.; Fan, M. K.; Sun, X. P. Ammonia synthesis from electrocatalytic N2 reduction under ambient conditions by Fe2O3 Nanorods. ChemCatChem. 2018, 10, 4530–4535.CrossRefGoogle Scholar
  137. [137]
    Liu, Q.; Zhang, X. X.; Zhang, B.; Luo, Y. L.; Cui, G. W.; Xie, F. Y.; Sun, X. P. Ambient N2 fixation to NH3 electrocatalyzed by a spinel Fe3O4 nanorod. Nanoscale 2018, 10, 14386–14389.CrossRefGoogle Scholar
  138. [138]
    Zhang, R.; Ren, X.; Shi, X. F.; Xie, F. Y.; Zheng, B. Z.; Guo, X. D.; Sun, X. P. Enabling effective electrocatalytic N2 conversion to NH3 by the TiO2 nanosheets array under ambient conditions. ACS Appl. Mater. Interfaces 2018, 10, 28251–28255.CrossRefGoogle Scholar
  139. [139]
    Zhang, X. X.; Liu, Q.; Shi, X. F.; Asiri, A. M.; Luo, Y. L.; Sun, X. P.; Li, T. S. TiO2 nanoparticles–reduced graphene oxide hybrid: An efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions. J. Mater. Chem. A 2018, 6, 17303–17306.CrossRefGoogle Scholar
  140. [140]
    Zhang, Y.; Qiu, W. B.; Ma, Y. J.; Luo, Y. L.; Tian, Z. Q.; Cui, G. W.; Xie, F. Y.; Chen, L.; Li, T. S.; Sun, X. P. High-performance electrohydrogenation of N2 to NH3 catalyzed by multishelled hollow Cr2O3 microspheres under ambient conditions. ACS Catal. 2018, 8, 8540–8544.CrossRefGoogle Scholar
  141. [141]
    Han, J. R.; Ji, X. Q.; Ren, X.; Cui, G. W.; Li, L.; Xie, F. Y.; Wang, H.; Li, B. H.; Sun, X. P. MoO3 nanosheets for efficient electrocatalytic N2 fixation to NH3. J. Mater. Chem. A 2018, 6, 12974–12977.CrossRefGoogle Scholar
  142. [142]
    Han, J. R.; Liu, Z. C.; Ma, Y. J.; Cui, G. W.; Xie, F. Y.; Wang, F. X.; Wu, Y. P.; Gao, S. Y.; Xu, Y. H.; Sun, X. P. Ambient N2 fixation to NH3 at ambient conditions: Using Nb2O5 nanofiber as a high-performance electrocatalyst. Nano Energy 2018, 52, 264–270.CrossRefGoogle Scholar
  143. [143]
    Zhang, L.; Ren, X.; Luo, Y. L.; Shi, X. F.; Asiri, A. M.; Li, T. S.; Sun, X. P. Ambient NH3 synthesis via electrochemical reduction of N2 over cubic sub-micron SnO2 particles. Chem. Commun. 2018, 54, 12966–12969.CrossRefGoogle Scholar
  144. [144]
    Lv, C. D.; Yan, C. S.; Chen, G.; Ding, Y.; Sun, J. X.; Zhou, Y. S.; Yu, G. H. An amorphous noble–metal–free electrocatalyst that enables nitrogen fixation under ambient conditions. Angew. Chem. 2018, 130, 6181–6184.CrossRefGoogle Scholar
  145. [145]
    Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.CrossRefGoogle Scholar
  146. [146]
    Zhang, X. P.; Kong, R. M.; Du, H. T.; Xia, L.; Qu, F. L. Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions. Chem. Commun. 2018, 54, 5323–5325.CrossRefGoogle Scholar
  147. [147]
    Yang, X.; Nash, J.; Anibal, J.; Dunwell, M.; Kattel, S.; Stavitski, E.; Attenkofer, K.; Chen, J. G.; Yan, Y. S.; Xu, B. J. Mechanistic insights into electrochemical nitrogen reduction reaction on vanadium nitride nanoparticles. J. Am. Chem. Soc. 2018, 140, 13387–13391.CrossRefGoogle Scholar
  148. [148]
    Ren, X.; Cui, G. W.; Chen, L.; Xie, F. Y.; Wei, Q.; Tian, Z. Q.; Sun, X. P. Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst. Chem. Commun. 2018, 54, 8474–8477.CrossRefGoogle Scholar
  149. [149]
    Köleli, F.; Röpke, T. Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Appl. Catal. B Environ. 2006, 62, 306–310.CrossRefGoogle Scholar
  150. [150]
    Chen, S. M.; Perathoner, S.; Ampelli, C.; Mebrahtu, C.; Su, D. S.; Centi, G. Room-temperature electrocatalytic synthesis of NH3 from H2O and N2 in a gas-liquid-solid three-phase reactor. ACS Sustainable Chem. Eng. 2017, 5, 7393–7400.CrossRefGoogle Scholar
  151. [151]
    Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.CrossRefGoogle Scholar
  152. [152]
    Zhao, C. M.; Dai, X. Y.; Yao, T.; Chen, W. X.; Wang, X. Q.; Wang, J.; Yang, J.; Wei, S. Q.; Wu, Y.; Li, Y. D. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081.CrossRefGoogle Scholar
  153. [153]
    Yin, P. Q.; Yao, T.; Wu, Y.; Zheng, L. R.; Lin, Y.; Liu, W.; Ju, H. X.; Zhu, J. F.; Hong, X.; Deng, Z. X. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805.CrossRefGoogle Scholar
  154. [154]
    Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.CrossRefGoogle Scholar
  155. [155]
    Zhao, L. J.; Qian, R. C.; Ma, W.; Tian, H.; Long, Y. T. Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision. Anal. Chem. 2016, 88, 8375–8379.CrossRefGoogle Scholar
  156. [156]
    Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.CrossRefGoogle Scholar
  157. [157]
    Peng, Y. Y.; Guo, D.; Ma, W.; Long, Y. T. Intrinsic Electrocatalytic activity of gold nanoparticles measured by single entity electrochemistry. ChemElectroChem 2018, 5, 2982–2985.CrossRefGoogle Scholar
  158. [158]
    Ma, H.; Ma, W.; Chen, J. F.; Liu, X. Y.; Peng, Y. Y.; Yang, Z. Y.; Tian, H.; Long, Y. T. Quantifying visible-light-induced electron transfer properties of single dye-sensitized ZnO entity for water splitting. J. Am. Chem. Soc. 2018, 140, 5272–5279.CrossRefGoogle Scholar
  159. [159]
    Peng, Y. Y.; Ma, H.; Ma, W.; Long, Y. T.; Tian, H. Single-nanoparticle photoelectrochemistry at a nanoparticulate TiO2-filmed ultramicroelectrode. Angew. Chem., Int. Ed. 2018, 57, 3758–3762.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaolan Xue
    • 1
  • Renpeng Chen
    • 1
  • Changzeng Yan
    • 1
  • Peiyang Zhao
    • 1
  • Yi Hu
    • 1
  • Wenjun Zhang
    • 1
  • Songyuan Yang
    • 1
  • Zhong Jin
    • 1
    Email author
  1. 1.Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations