Advertisement

Crystal phase engineering on photocatalytic materials for energy and environmental applications

  • Song BaiEmail author
  • Chao Gao
  • Jingxiang Low
  • Yujie XiongEmail author
Review Article

Abstract

Crystal phase engineering on photocatalytic materials is a subfield of photocatalysis with intensive research, which has been proven as a versatile approach to maneuver their performance for applications in energy- and environment-related fields. In this article, the state-of-the-art progress on phase-engineered photocatalytic materials is reviewed. Firstly, we discuss the phase engineering on pristine semiconductor photocatalysts, in which the phase-dependent light absorption, charge transfer and separation, and surface reaction behaviors in photocatalytic processes are summarized, respectively. Based on the elucidated mechanisms, the implementation of phase junctions in photocatalytic reactions is then presented. As a focus, we highlight the rational design of phase junctions toward steering the charge kinetics for enhanced photocatalytic and photoelectrocatalytic performance. Moreover, the crystal phase engineering on semiconductor-based hybrid photocatalysts is also introduced, which underlines the importance of choosing a suitable phase for semiconductor components and co-catalysts as well as the synergism of different semiconductor phases for improved photocatalytic performance. Finally, the challenges and perspectives in this research field are proposed. In this review, particular emphasis is placed on establishing a linkage between crystal phase and photocatalytic activity to develop a structure-activity guide. Based on the guide, a framework is suggested for future research on the rational phase design of photocatalysts for improved performance in energy and environmental applications.

Keywords

photocatalysis crystal phase charge kinetics architectural design energy environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported in part by National Key R&D Program of China (No. 2017YFA0207301), National Natural Science Foundation of China (Nos. 21725102, 21471141, 21603191, and U1532135), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018), CAS Interdisciplinary Innovation Team, and Innovative Program of Development Foundation of Hefei Center for Physical Science and Technology (No. 2016FXCX003).

References

  1. [1]
    Linsebigler, A. L.; Lu G. Q.; Yates., J. T., Jr. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.CrossRefGoogle Scholar
  2. [2]
    Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96.CrossRefGoogle Scholar
  3. [3]
    Ma, Y.; Wang, X. L.; Jia, Y. S.; Chen, X. B.; Han, H. X.; Li, C. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 2014, 114, 9987–10043.CrossRefGoogle Scholar
  4. [4]
    Wang, X. X.; Jing, D. W.; Ni, M. Solar photocatalytic energy conversion. Sci. Bull. 2017, 62, 597–598.CrossRefGoogle Scholar
  5. [5]
    Chen, X. B.; Chen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.CrossRefGoogle Scholar
  6. [6]
    Wu, L. Z.; Chen, B.; Li, Z. J.; Tung, C. H. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Acc. Chem. Res. 2014, 47, 2177–2185.CrossRefGoogle Scholar
  7. [7]
    White, J. L.; Baruch, M. F.; Pander III, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.CrossRefGoogle Scholar
  8. [8]
    Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.CrossRefGoogle Scholar
  9. [9]
    Tu, W. G.; Zou, Y.; Zhou, Z. G. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: State-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 2014, 26, 4607–4626.CrossRefGoogle Scholar
  10. [10]
    Chong, M. N.; Jin, B.; Chow, C. W. K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027.CrossRefGoogle Scholar
  11. [11]
    Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Recent progress in photocatalytic CO2 reduction over perovskite oxides. Solar RRL 2017, 1, 1700126.CrossRefGoogle Scholar
  12. [12]
    Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.CrossRefGoogle Scholar
  13. [13]
    Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.CrossRefGoogle Scholar
  14. [14]
    Kudo A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.CrossRefGoogle Scholar
  15. [15]
    Li, X.; Yu, J. G.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603–2636.CrossRefGoogle Scholar
  16. [16]
    Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.CrossRefGoogle Scholar
  17. [17]
    Youngblood, W. J.; Lee, S. H. A.; Maeda, K.; Mallouk, T. E. Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 2009, 42, 1966–1973.CrossRefGoogle Scholar
  18. [18]
    Tran, P. D.; Wong, L. H.; Barber J.; Loo, J. S. C. Recent advances in hybrid photocatalysts for solar fuel production. Energy Environ. Sci. 2012, 5, 5902–5918.CrossRefGoogle Scholar
  19. [19]
    Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.CrossRefGoogle Scholar
  20. [20]
    Wang, H. L.; Zhang, L. S.; Chen, Z. G.; Hu, J. Q.; Li, S. J.; Wang, Z. H.; Liu, J. S.; Wang, X. C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244.CrossRefGoogle Scholar
  21. [21]
    Gao, X. H.; Wu, H. B.; Zheng, L. X.; Zhong, Y. J.; Hu, Y.; Lou X. W. Formation of mesoporous heterostructured BiVO4/Bi2S3 hollow discoids with enhanced photoactivity. Angew. Chem., Int. Ed. 2014, 53, 5917–5921.CrossRefGoogle Scholar
  22. [22]
    Zhao, Y. F.; Li, Z. H.; Li, M. Z.; Liu, J. J.; Liu, X. W.; Water, G. I. N.; Wang, Y. S.; Zhao, J. Q.; Gao, W.; Zhang, Z. S. et al. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv. Mater. 2018, 30, 1803127.CrossRefGoogle Scholar
  23. [23]
    Yang, J. H.; Wang, D. G.; Han, H. X.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.CrossRefGoogle Scholar
  24. [24]
    Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.CrossRefGoogle Scholar
  25. [25]
    Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.CrossRefGoogle Scholar
  26. [26]
    Bai, S.; Xiong, Y. J. Some recent developments in surface and interface design for photocatalytic and electrocatalytic hybrid structures. Chem. Commun. 2015, 51, 10261–10271.CrossRefGoogle Scholar
  27. [27]
    Bai, S.; Jiang, W. Y.; Li, Z. Q.; Xiong, Y. J. Surface and interface engineering in photocatalysis. ChemNanoMat 2015, 1, 223–239.CrossRefGoogle Scholar
  28. [28]
    Yu. H. J.; Shi, R.; Zhao, Y. X.; Bian, T.; Zhao, Y. F.; Zhou. C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution. Adv. Mater. 2017, 29, 1605148.CrossRefGoogle Scholar
  29. [29]
    Scanlon, D. O.; Dunnill, C. W.; Buckeridge, J.; Shevlin, S. A.; Logsdail, A. J.; Woodley, S. M.; Catlow, C. R. A.; Powell, M. J.; Palgrave, R. G.; Parkin, I. P. et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801.CrossRefGoogle Scholar
  30. [30]
    Nosaka, Y.; Nosaka, A. Y. Reconsideration of intrinsic band alignments within anatase and rutile TiO2. J. Phys. Chem. Lett. 2016, 7, 431–434.CrossRefGoogle Scholar
  31. [31]
    Sarkar, T.; Gopinadhan, K.; Zhou, J.; Saha, S.; Coey, J. M. D.; Feng, Y. P.; Venkatesan, T. Electron transport at the TiO2 surfaces of rutile, anatase, and strontium titanate: The influence of orbital corrugation. ACS Appl. Mater. Interfaces 2015, 7, 24616–24621.CrossRefGoogle Scholar
  32. [32]
    Wang, X. L.; Kafizas, A.; Li, X. E.; Moniz, S. J. A.; Reardon, P. J. T.; Tang, J. W.; Parkin, I. P.; Durrant, J. R. Transient absorption spectroscopy of anatase and rutile: The impact of morphology and phase on photocatalytic activity. J. Phys. Chem. C 2015, 119, 10439–10447.CrossRefGoogle Scholar
  33. [33]
    Thomas, A. G.; Syres, K. L. Adsorption of organic molecules on rutile TiO2 and anatase TiO2 single crystal surfaces. Chem. Soc. Rev. 2012, 41, 4207–4217.CrossRefGoogle Scholar
  34. [34]
    Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754–9823.CrossRefGoogle Scholar
  35. [35]
    Liu, L. J.; Zhao, H. L.; Andino, J. M.; Li, Y. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2012, 2, 1817–1828.CrossRefGoogle Scholar
  36. [36]
    Tsukamoto, D.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. J. Am. Chem. Soc. 2012, 134, 6309–6315.CrossRefGoogle Scholar
  37. [37]
    Bai, Y.; Huang, H.; Wang, C. M.; Long, R.; Xiong, Y. J. Engineering the surface charge states of nanostructures for enhanced catalytic performance. Mater. Chem. Front. 2017, 1, 1951–1964.CrossRefGoogle Scholar
  38. [38]
    Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem., Int. Ed. 2008, 47, 1766–1769.CrossRefGoogle Scholar
  39. [39]
    Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α–β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089–13092.CrossRefGoogle Scholar
  40. [40]
    Ma, Y.; Wang, X. L.; Li, C. Charge separation promoted by phase junctions in photocatalysts. Chin. J. Catal. 2015, 36, 1519–1527.CrossRefGoogle Scholar
  41. [41]
    Li, J. G.; Ishigaki, T.; Sun, X. D. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: Phase-selective synthesis and physicochemical properties. J. Phys. Chem. C 2007, 111, 4969–4976.CrossRefGoogle Scholar
  42. [42]
    Augugliaro, V.; Loddo, V.; López-Muñoz, M. J.; Márquez-Álvarez, C.; Palmisano, G.; Palmisano, L.; Yurdakal, S. Home-prepared anatase, rutile, and brookite TiO2 for selective photocatalytic oxidation of 4-methoxybenzyl alcohol in water: Reactivity and ATR-FTIR study. Photochem. Photobiol. Sci. 2009, 8, 663–669.CrossRefGoogle Scholar
  43. [43]
    Kandiel, T. A.; Feldhoff, A.; Robben, L.; Dillert, R.; Bahnemann, D. W. Tailored titanium dioxide nanomaterials: Anatase nanoparticles and brookite nanorods as highly active photocatalysts. Chem. Mater. 2010, 22, 2050–2060.CrossRefGoogle Scholar
  44. [44]
    Yang, Z. W.; Wang, B.; Cui, H.; An, H.; Pan, Y.; Zhai, J. P. Synthesis of crystal-controlled TiO2 nanorods by a hydrothermal method: Rutile and brookite as highly active photocatalysts. J. Phys. Chem. C 2015, 119, 16905–16912.CrossRefGoogle Scholar
  45. [45]
    Yurdakal, S.; Tek, B. S.; Alagöz, O.; Augugliaro, V.; Loddo, V.; Palmisano, G.; Palmisano, L. Photocatalytic selective oxidation of 5-(hydroxymethyl)- 2-furaldehyde to 2,5-furandicarbaldehyde in water by using anatase, rutile, and brookite TiO2 nanoparticles. ACS Sustainable Chem. Eng. 2013, 1, 456–461.CrossRefGoogle Scholar
  46. [46]
    Zhang, J.; Yan, S.; Fu, L.; Wang, F.; Yuan, M. Q.; Luo, G. X.; Xu, Q.; Wang, X.; Li, C. Photocatalytic degradation of rhodamine B on anatase, rutile, and brookite TiO2. Chin. J. Catal. 2011, 32, 983–991.CrossRefGoogle Scholar
  47. [47]
    Addamo, M.; Bellardita, M.; Di Paola, A.; Palmisano, L. Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. Chem. Commun. 2006, 4943–4945.Google Scholar
  48. [48]
    Sun, Q.; Xu, Y. M. Evaluating intrinsic photocatalytic activities of anatase and rutile TiO2 for organic degradation in water. J. Phys. Chem. C 2010, 114, 18911–18918.CrossRefGoogle Scholar
  49. [49]
    Silva, C. G.; Faria, J. L. Anatase vs. rutile efficiency on the photocatalytic degradation of clofibric acid under near UV to visible irradiation. Photochem. Photobiol. Sci. 2009, 8, 705–711.CrossRefGoogle Scholar
  50. [50]
    Tran, H. T. T.; Kosslick, H.; Ibad, M. F.; Fischer, C.; Bentrup, U.; Vuong, T. H.; Nguyen, L. Q.; Schulz, A. Photocatalytic performance of highly active brookite in the degradation of hazardous organic compounds compared to anatase and rutile. Appl. Catal. B: Environ. 2017, 200, 647–658.CrossRefGoogle Scholar
  51. [51]
    Puddu, V.; Choi, H.; Dionysiou, D. D.; Puma, G. L. TiO2 photocatalyst for indoor air remediation: Influence of crystallinity, crystal phase, and UV radiation intensity on trichloroethylene degradation. Appl. Catal. B: Environ. 2010, 94, 211–218.CrossRefGoogle Scholar
  52. [52]
    Testino, A.; Bellobono, I. R.; Buscaglia, V.; Canevali, C.; D’Arienzo, M.; Polizzi, S.; Scotti, R.; Morazzoni, F. Optimizing the photocatalytic properties of hydrothermal TiO2 by the control of phase composition and particle morphology. A systematic approach. J. Am. Chem. Soc. 2007, 129, 3564–3575.CrossRefGoogle Scholar
  53. [53]
    Scotti, R.; Bellobono, I. R.; Canevali, C.; Cannas, C.; Catti, M.; D’Arienzo, M.; Musinu, A.; Polizzi, S.; Sommariva, M.; Testino, A. et al. Sol-gel pure and mixed-phase titanium dioxide for photocatalytic purposes: Relations between phase composition, catalytic activity, and charge-trapped sites. Chem. Mater. 2008, 20, 4051–4061.CrossRefGoogle Scholar
  54. [54]
    Nayak, A. K.; Lee, S.; Choi, Y. I.; Yoon, H. J.; Sohn, Y.; Pradhan, D. Crystal phase and size-controlled synthesis of tungsten trioxide hydrate nanoplates at room temperature: Enhanced Cr(VI) photoreduction and methylene blue adsorption properties. ACS Sustainable Chem. Eng. 2017, 5, 2741–2750.CrossRefGoogle Scholar
  55. [55]
    Nagy, D.; Nagy, D.; Szilagyi, I. M.; Fan, X. F. Effect of the morphology and phases of WO3 nanocrystals on their photocatalytic efficiency. RSC Adv. 2016, 6, 33743–33754.CrossRefGoogle Scholar
  56. [56]
    Zhang, S. Y.; Li, H.; Yang, Z. F. Controllable synthesis of WO3 with different crystalline phases and its applications on methylene blue removal from aqueous solution. J. Alloy Compd. 2017, 722, 555–563.CrossRefGoogle Scholar
  57. [57]
    Qiu, Y. F.; Yang, M. L.; Fan, H. B.; Zuo, Y. Z.; Shao, Y. Y.; Xu, Y. J.; Yang, X. X.; Yang, S. H. Nanowires of α- and β-Bi2O3: Phase-selective synthesis and application in photocatalysis. CrystEngComm 2011, 13, 1843–1850.CrossRefGoogle Scholar
  58. [58]
    Ghodsi, V.; Jin, S. S.; Byers, J. C.; Pan, Y.; Radovanovic, P. V. Anomalous photocatalytic activity of nanocrystalline γ-Phase Ga2O3 enabled by longlived defect trap states. J. Phys. Chem. C 2017, 121, 9433–9441.CrossRefGoogle Scholar
  59. [59]
    Hou, Y. D.; Wu, L.; Wang, X. C.; Ding, Z. X.; Li, Z. H.; Fu, X. Z. Photocatalytic performance of α-, β-, and γ-Ga2O3 for the destruction of volatile aromatic pollutants in air. J. Catal. 2007, 250, 12–18.CrossRefGoogle Scholar
  60. [60]
    Lang, D.; Xiang, Q. J.; Qiu, G. H.; Feng, X. G.; Liu, F. Effects of crystalline phase and morphology on the visible light photocatalytic H2-production activity of CdS nanocrystals. Dalton Trans. 2014, 43, 7245–7253.CrossRefGoogle Scholar
  61. [61]
    Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K.; Gupta, A.; Yanagisawa K.; Grimes, C. A. Facile Cd-thiourea complex thermolysis synthesis of phase-controlled CdS nanocrystals for photocatalytic hydrogen production under visible light. J. Phys. Chem. C 2007, 111, 17527–17534.CrossRefGoogle Scholar
  62. [62]
    Hong, Y. P.; Zhang, J.; Wang, X.; Wang, Y. J.; Lin, Z.; Yu, J. G.; Huang, F. Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. Nanoscale 2012, 4, 2859–2862.CrossRefGoogle Scholar
  63. [63]
    Zhang, L. H.; Yang, H. Q.; Yu, J.; Shao, F. H.; Li, L.; Zhang, F. H.; Zhao, H. Controlled synthesis and photocatalytic activity of ZnSe nanostructured assemblies with different morphologies and crystalline phases. J. Phys. Chem. C 2009, 113, 5434–5443.CrossRefGoogle Scholar
  64. [64]
    Chen, D. M.; Hao, Q.; Wang, Z. H.; Ding, H.; Zhu, Y. F. Influence of phase structure and morphology on the photocatalytic activity of bismuth molybdates. CrystEngComm 2016, 18, 1976–1986.CrossRefGoogle Scholar
  65. [65]
    Li, P.; Ouyang, S. X.; Xi, G. C.; Kako, T.; Ye, J. H. The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J. Phys. Chem. C 2012, 116, 7621–7628.CrossRefGoogle Scholar
  66. [66]
    Yan, L. S.; Zhang, J.; Zhou, X. M.; Wu, X. X.; Lan, J. Y.; Wang, Y. S.; Liu, G.; Yu J. G.; Zhi, L. J. Crystalline phase-dependent photocatalytic water splitting for hydrogen generation on KNbO3 submicro-crystals. Int. J. Hydrogen Energy 2013, 38, 3554–3561.CrossRefGoogle Scholar
  67. [67]
    Ouyang, S. X.; Kikugawa, N.; Chen, D.; Zou, Z. G.; Ye, J. H. A systematical study on photocatalytic properties of AgMO2 (M = Al, Ga, In): Effects of chemical compositions, crystal structures, and electronic structures. J. Phys. Chem. C 2009, 113, 1560–1566.CrossRefGoogle Scholar
  68. [68]
    Wang, J. H.; Li, J. Z.; Li, H.; Duan, S. X.; Meng, S. G.; Fu, X. L.; Chen, S. F. Crystal phase-controlled synthesis of BiPO4 and the effect of phase structure on the photocatalytic degradation of gaseous benzene. Chem. Eng. J. 2017, 330, 433–441.CrossRefGoogle Scholar
  69. [69]
    Liu, Y. Y.; Huang, B. B.; Dai, Y.; Zhang, X. Y.; Qin, X. Y.; Jiang, M. H.; Whangbo, M. H. Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO4 photocatalyst. Catal. Commun. 2009, 11, 210–213.CrossRefGoogle Scholar
  70. [70]
    Kudo, A.; Omori, K.; Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 1999, 121, 11459–11467.CrossRefGoogle Scholar
  71. [71]
    Tokunaga, S.; Kato, H.; Kudo, A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chem. Mater. 2001, 13, 4624–4628.CrossRefGoogle Scholar
  72. [72]
    Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z.; Fan, X. X.; Zou, Z. G. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Mater. Chem. Phys. 2007, 103, 162–167.CrossRefGoogle Scholar
  73. [73]
    Zhao, G.; Wang, T. L.; Shao, Y. L.; Wu, Y. Z.; Huang, B. B.; Hao, X. P. A novel mild phase-transition to prepare black phosphorus nanosheets with excellent energy applications. Small 2017, 13, 1602243.CrossRefGoogle Scholar
  74. [74]
    Chang, Z. X.; Zhou, W. H.; Kou, D. X.; Zhou, Z. J.; Wu, S. X. Phasedependent photocatalytic H2 evolution of copper zinc tin sulfide under visible light. Chem. Commun. 2014, 50, 12726–12729.CrossRefGoogle Scholar
  75. [75]
    Liu, G.; Wang, L. Z.; Yang, H. G.; Cheng, H. M.; Lu, G. Q. Titania-based photocatalysts–crystal growth, doping and heterostructuring. J. Mater. Chem. 2010, 20, 831–843.CrossRefGoogle Scholar
  76. [76]
    Hu, W. B.; Li, L. P.; Li, G. S.; Tang, C. L.; Sun, L. High-quality brookite TiO2 flowers: Synthesis, characterization, and dielectric performance. Cryst. Growth Des. 2009, 9, 3676–3682.CrossRefGoogle Scholar
  77. [77]
    Zhang, J. F.; Zhou, P.; Liu, J. J.; Yu, J. G. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386.CrossRefGoogle Scholar
  78. [78]
    Xu, M. C.; Gao, Y. K.; Moreno, E. M.; Kunst, M.; Muhler, M.; Wang, Y. M.; Idriss, H.; Wöll, C. Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 2011, 106, 138302.CrossRefGoogle Scholar
  79. [79]
    Luttrell, T.; Halpegamage, S.; Tao, J. G.; Kramer, A.; Sutter, E.; Batzill, M. Why is anatase a better photocatalyst than rutile? -Model studies on epitaxial TiO2 films. Sci. Rep. 2014, 4, 4043.CrossRefGoogle Scholar
  80. [80]
    Maity, P.; Mohammed, O. F.; Katsiev, K.; Idriss, H. Study of the bulk charge carrier dynamics in anatase and rutile TiO2 single crystals by femtosecond time-resolved spectroscopy. J. Phys. Chem. C 2018, 122, 8925–8932.CrossRefGoogle Scholar
  81. [81]
    Yan, J. Q.; Wu, G. J.; Guan, N. J.; Li, L. D.; Li, Z. X.; Cao, X. Z. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile. Phys. Chem. Chem. Phys. 2013, 15, 10978–10988.CrossRefGoogle Scholar
  82. [82]
    Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.CrossRefGoogle Scholar
  83. [83]
    Sachs, M.; Pastor, E.; Kafizas, A.; Durrant, J. R. Evaluation of surface state mediated charge recombination in anatase and rutile TiO2. J. Phys. Chem. Lett. 2016, 7, 3742–3746.CrossRefGoogle Scholar
  84. [84]
    Vequizo, J. J. M.; Matsunaga, H.; Ishiku, T.; Kamimura, S.; Ohno, T.; Yamakata, A. Trapping-induced enhancement of photocatalytic activity on brookite TiO2 powders: Comparison with anatase and rutile TiO2 powders. ACS Catal. 2017, 7, 2644–2651.CrossRefGoogle Scholar
  85. [85]
    Batzill, M. Fundamental aspects of surface engineering of transition metal oxide photocatalysts. Energy Environ. Sci. 2011, 4, 3275–3286.CrossRefGoogle Scholar
  86. [86]
    Zawadzki, P.; Laursen, A. B.; Jacobsen, K. W.; Dahl, S.; Rossmeisl, J. Oxidative trends of TiO2–hole trapping at anatase and rutile surfaces. Energy Environ. Sci. 2012, 5, 9866–9869.CrossRefGoogle Scholar
  87. [87]
    Liu, G.; Yang, H. G.; Pan, J.; Yang, Y. Q.; Lu, G. Q.; Cheng, H. M. Titanium dioxide crystals with tailored facets. Chem. Rev. 2014, 114, 9559–9612.CrossRefGoogle Scholar
  88. [88]
    Bai, S.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Facet-engineered surface and interface design of photocatalytic materials. Adv. Sci. 2017, 4, 1600216.CrossRefGoogle Scholar
  89. [89]
    Ahmed, A. Y.; Kandiel, T. A.; Oekermann, T.; Bahnemann, D. Photocatalytic activities of different well-defined single crystal TiO2 surfaces: Anatase versus rutile. J. Phys. Chem. Lett. 2011, 2, 2461–2465.CrossRefGoogle Scholar
  90. [90]
    Sun, H. J.; Mowbray, D. J.; Migani, A.; Zhao, J.; Petek, H.; Rubio, A. Comparing quasiparticle H2O level alignment on anatase and rutile TiO2. ACS Catal. 2015, 5, 4242–4254.CrossRefGoogle Scholar
  91. [91]
    Zhao, W. N.; Liu, Z. P. Mechanism and active site of photocatalytic water splitting on titania in aqueous surroundings. Chem. Sci. 2014, 5, 2256–2264.CrossRefGoogle Scholar
  92. [92]
    Li, Y. F.; Selloni, A. Pathway of photocatalytic oxygen evolution on aqueous TiO2 anatase and insights into the different activities of anatase and rutile. ACS Catal. 2016, 6, 4769–4774.CrossRefGoogle Scholar
  93. [93]
    Kandiel, T. A.; Robben, L.; Alkaim, A.; Bahnemann, D. Brookite versus anatase TiO2 photocatalysts: Phase transformations and photocatalytic activities. Photochem. Photobiol. Sci. 2013, 12, 602–609.CrossRefGoogle Scholar
  94. [94]
    Li, Z.; Cong, S.; Xu, Y. M. Brookite vs anatase TiO2 in the photocatalytic activity for organic degradation in water. ACS Catal. 2014, 4, 3273–3280.CrossRefGoogle Scholar
  95. [95]
    Mattsson, A.; Österlund, L. Adsorption and photoinduced decomposition of acetone and acetic acid on anatase, brookite, and rutile TiO2 nanoparticles. J. Phys. Chem. C 2010, 114, 14121–14132.CrossRefGoogle Scholar
  96. [96]
    Matsushita, M.; Tran, T. H.; Nosaka, A. Y.; Nosaka, Y. Photo-oxidation mechanism of L-alanine in TiO2 photocatalytic systems as studied by proton NMR spectroscopy. Catal. Today 2007, 120, 240–244.CrossRefGoogle Scholar
  97. [97]
    Bui, T. D.; Kimura, A.; Ikeda, S.; Matsumura, M. Determination of oxygen sources for oxidation of benzene on TiO2 photocatalysts in aqueous solutions containing molecular oxygen. J. Am. Chem. Soc. 2010, 132, 8453–8458.CrossRefGoogle Scholar
  98. [98]
    Buchalska, M.; Kobielusz, M.; Matuszek, A.; Pacia, M.; Wojtyła, S.; Macyk, W. On oxygen activation at rutile- and anatase-TiO2. ACS Catal. 2015, 5, 7424–7431.CrossRefGoogle Scholar
  99. [99]
    Hirakawa, T.; Yawata, K.; Nosaka, Y. Photocatalytic reactivity for O2and OH• radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A: Gen. 2007, 325, 105–111.CrossRefGoogle Scholar
  100. [100]
    Kim, W.; Tachikawa, T.; Moon, G. H.; Majima, T.; Choi, W. Molecularlevel understanding of the photocatalytic activity difference between anatase and rutile nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 14036–14041.CrossRefGoogle Scholar
  101. [101]
    Odling, G.; Robertson, N. Why is anatase a better photocatalyst than rutile? The importance of free hydroxyl radicals. ChemSusChem 2015, 8, 1838–1840.Google Scholar
  102. [102]
    Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 2015, 8, 2377–2382.CrossRefGoogle Scholar
  103. [103]
    Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. A structural investigation of titanium dioxide photocatalysts. J. Solid State Chem. 1991, 92, 178–190.CrossRefGoogle Scholar
  104. [104]
    Datye, A. K.; Riegel, G.; Bolton, J. R.; Huang, M.; Prairie, M. R. Microstructural characterization of a fumed titanium dioxide photocatalyst. J. Solid State Chem. 1995, 115, 236–239.CrossRefGoogle Scholar
  105. [105]
    Ohno, T.; Sarukawa, K.; Tokieda, K.; Matsumura, M. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. J. Catal. 2001, 203, 82–86.CrossRefGoogle Scholar
  106. [106]
    Kawahara, T.; Konishi, Y.; Tada, H.; Tohge, N.; Nishii, J.; Ito, S. A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem., Int. Ed. 2002, 41, 2811–2813.CrossRefGoogle Scholar
  107. [107]
    Sun, B.; Vorontsov, A. V.; Smirniotis, P. G. Role of platinum deposited on TiO2 in phenol photocatalytic oxidation. Langmuir 2003, 19, 3151–3156.CrossRefGoogle Scholar
  108. [108]
    Hurum, D. C.; Agrios, A. G.; Gray, K. A. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549.CrossRefGoogle Scholar
  109. [109]
    Zachariah, A.; Baiju, K. V.; Shukla, S.; Deepa, K. S.; James, J.; Warrier, K. G. K. Synergistic effect in photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 2008, 112, 11345–11356.CrossRefGoogle Scholar
  110. [110]
    Cao, F. R.; Xiong, J.; Wu, F. L.; Liu, Q.; Shi, Z. W.; Yu, Y. H.; Wang, X. D.; Li, L. Enhanced photoelectrochemical performance from rationally designed anatase/rutile TiO2 heterostructures. ACS Appl. Mater. Interfaces 2016, 8, 12239–12245.CrossRefGoogle Scholar
  111. [111]
    Liu, J.; Yu, X. L.; Liu, Q. Y.; Liu, R. J.; Shang, X. K.; Zhang, S. S.; Li, W. H.; Zheng, W. Q.; Zhang, G. J.; Cao, H. et al. Surface-phase junctions of branched TiO2 nanorod arrays for efficient photoelectrochemical water splitting. Appl. Catal. B: Environ. 2014, 158–159, 296–300.CrossRefGoogle Scholar
  112. [112]
    Liu, G.; Yan, X. X.; Chen, Z. G.; Wang, X. W.; Wang, L. Z.; Lu, G. Q.; Cheng, H. M. Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. J. Mater. Chem. 2009, 19, 6590–6596.CrossRefGoogle Scholar
  113. [113]
    Luo, Y.; Liu, X. Y.; Huang, J. G. Heterogeneous nanotubular anatase/ rutile titania composite derived from natural cellulose substance and its photocatalytic property. CrystEngComm 2013, 15, 5586–5590.CrossRefGoogle Scholar
  114. [114]
    Cao, L.; Chen, D. H.; Li, W.; Caruso, R. A. Hierarchically porous titania networks with tunable anatase: Rutile ratios and their enhanced photocatalytic activities. ACS Appl. Mater. Interfaces 2014, 6, 13129–13137.CrossRefGoogle Scholar
  115. [115]
    Luo, Z.; Poyraz, A. S.; Kuo, C. H.; Miao, R.; Meng, Y. T.; Chen, S. Y.; Jiang, T.; Wenos, C.; Suib, S. L. Crystalline mixed phase (anatase/rutile) mesoporous titanium dioxides for visible light photocatalytic activity. Chem. Mater. 2015, 27, 6–17.CrossRefGoogle Scholar
  116. [116]
    Wang, W. K.; Chen, J. J.; Zhang, X.; Huang, Y. X.; Li, W. W.; Yu, H. Q. Self-induced synthesis of phase-junction TiO2 with a tailored rutile to anatase ratio below phase transition temperature. Sci. Rep. 2016, 6, 20491.CrossRefGoogle Scholar
  117. [117]
    Xiong, Z. G.; Wu, H.; Zhang, L. H.; Gu Y.; Zhao, X. S. Synthesis of TiO2 with controllable ratio of anatase to rutile. J. Mater. Chem. A 2014, 2, 9291–9297.CrossRefGoogle Scholar
  118. [118]
    Fu, W. W.; Li, G. D.; Wang, Y.; Zeng, S. J.; Yan, Z. J.; Wang, J. W.; Xin, S. G.; Zhang, L.; Wu S. W.; Zhang, Z. T. Facile formation of mesoporous structured mixed-phase (anatase/rutile) TiO2 with enhanced visible light photocatalytic activity. Chem. Commun. 2018, 54, 58–61.CrossRefGoogle Scholar
  119. [119]
    Cai, F. P.; Tang, Y. B.; Shen, H.; Wang, C.; Ren, A.; Xiao, L. S.; Gu W.; Shi, W. D. Graphene oxide-assisted synthesis and photocatalytic hydrogen production of mix-phase titanium dioxide (TiO2) nanosheets. CrystEngComm 2015, 17, 1086–1091.CrossRefGoogle Scholar
  120. [120]
    Kafizas, A.; Carmalt, C. J.; Parkin, I. P. Does a photocatalytic synergy in an anatase–rutile TiO2 composite thin-film exist? Chem. Eur. —J. 2012, 18, 13048–13058.CrossRefGoogle Scholar
  121. [121]
    An, X. Q.; Hu, C. Z.; Liu, H. J.; Qu, J. H. Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 24989–24994.CrossRefGoogle Scholar
  122. [122]
    Tay, Q.; Liu, X. F.; Tang, Y. X.; Jiang, Z. L.; Sum, T. C.; Chen, Z. Enhanced photocatalytic hydrogen production with synergistic two-phase anatase/brookite TiO2 nanostructures. J. Phys. Chem. C 2013, 117, 14973–14982.CrossRefGoogle Scholar
  123. [123]
    Liu, Y. X.; Wang, Z. L.; Wang, W. D.; Huang, W. X. Engineering highly active TiO2 photocatalysts via the surface-phase junction strategy employing a titanate nanotube precursor. J. Catal. 2014, 310, 16–23.CrossRefGoogle Scholar
  124. [124]
    Gai, L. G.; Duan, X. Q.; Jiang, H. H.; Mei, Q. H.; Zhou, G. W.; Tian, Y.; Liu, H. One-pot synthesis of nitrogen-doped TiO2 nanorods with anatase/ brookite structures and enhanced photocatalytic activity. CrystEngComm 2012, 14, 7662–7671.CrossRefGoogle Scholar
  125. [125]
    Zhao, H. L.; Liu, L. J.; Andino, J. M.; Li, Y. Bicrystalline TiO2 with controllable anatase–brookite phase content for enhanced CO2 photoreduction to fuels. J. Mater. Chem. A 2013, 1, 8209–8216.CrossRefGoogle Scholar
  126. [126]
    Lee, H. U.; Lee, S. C.; Seo, J. H.; Hong, W. G.; Kim, H.; Yun, H. J.; Kim, H. J.; Lee, J. Room temperature synthesis of nanoporous anatase and anatase/brookite TiO2 photocatalysts with high photocatalytic performance. Chem. Eng. J. 2013, 223, 209–215.CrossRefGoogle Scholar
  127. [127]
    El-Sheikh, S. M.; Khedr, T. M.; Zhang, G. S.; Vogiazi, V.; Ismail, A. A.; O’Shea, K.; Dionysiou, D. D. Tailored synthesis of anatase–brookite heterojunction photocatalysts for degradation of cylindrospermopsin under UV–Vis light. Chem. Eng. J. 2017, 310, 428–436.CrossRefGoogle Scholar
  128. [128]
    Xu, H.; Zhang, L. Z. Controllable one-pot synthesis and enhanced photocatalytic activity of mixed-phase TiO2 nanocrystals with tunable brookite/rutile ratios. J. Phys. Chem. C 2009, 113, 1785–1790.CrossRefGoogle Scholar
  129. [129]
    Pikuda, O.; Garlisi, C.; Scandura, G.; Palmisano, G. Micro-mesoporous N-doped brookite-rutile TiO2 as efficient catalysts for water remediation under UV-free visible LED radiation. J. Catal. 2017, 346, 109–116.CrossRefGoogle Scholar
  130. [130]
    Cao, Y. F.; Li, X. T.; Bian, Z. F.; Fuhr, A.; Zhang, D. Q.; Zhu, J. Highly photocatalytic activity of brookite/rutile TiO2 nanocrystals with semiembedded structure. Appl. Catal. B: Environ. 2016, 180, 551–558.CrossRefGoogle Scholar
  131. [131]
    Yang, D. J.; Liu, H. W.; Zheng, Z. F.; Yuan, Y.; Zhao, J. C.; Waclawik, E. R.; Ke, X. B.; Zhu, H. Y. An efficient photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 2009, 131, 17885–17893.CrossRefGoogle Scholar
  132. [132]
    Liu, B.; Khare, A.; Aydil, E. S. TiO2–B/anatase core–shell heterojunction nanowires for photocatalysis. ACS Appl. Mater. Interfaces 2011, 3, 4444–4450.CrossRefGoogle Scholar
  133. [133]
    Li, W.; Liu, C.; Zhou, Y. X.; Bai, Y.; Feng, X.; Yang, Z. H.; Lu, L. H.; Lu, X. H.; Chan, K. Y. Enhanced photocatalytic activity in anatase/TiO2(B) core−shell nanofiber. J. Phys. Chem. C 2008, 112, 20539–20545.CrossRefGoogle Scholar
  134. [134]
    Zhou, W. J.; Gai, L. G.; Hu, P. G.; Cui, J. J.; Liu, X. Y.; Wang, D. Z.; Li, G. H.; Jiang, H. D.; Liu, D.; Liu, H. et al. Phase transformation of TiO2 nanobelts and TiO2(B)/anatase interface heterostructure nanobelts with enhanced photocatalytic activity. CrystEngComm 2011, 13, 6643–6649.CrossRefGoogle Scholar
  135. [135]
    Ju, M. G.; Wang, X.; Liang, W. Z.; Zhao, Y.; Li, C. Tuning the energy band-gap of crystalline gallium oxide to enhance photocatalytic water splitting: Mixed-phase junctions. J. Mater. Chem. A 2014, 2, 17005–17014.CrossRefGoogle Scholar
  136. [136]
    Jin, S. Q.; Wang, X.; Wang, X. L.; Ju, M. G.; Shen, S.; Liang, W. Z.; Zhao, Y.; Feng, Z. C.; Playford, H. Y.; Walton, R. I. et al. Effect of phase junction structure on the photocatalytic performance in overall water splitting: Ga2O3 photocatalyst as an example. J. Phys. Chem. C 2015, 119, 18221–18228.CrossRefGoogle Scholar
  137. [137]
    Li, Y. S.; Tang, Z. L.; Zhang, J. Y.; Zhang, Z. T. Fabrication of vertical orthorhombic/hexagonal tungsten oxide phase junction with high photocatalytic performance. Appl. Catal. B: Environ. 2017, 207, 207–217.CrossRefGoogle Scholar
  138. [138]
    Hou, J. G.; Yang, C.; Wang, Z.; Zhou, W. L.; Jiao, S. Q.; Zhu, H. M. In situ synthesis of α–β phase heterojunction on Bi2O3 nanowires with exceptional visible-light photocatalytic performance. Appl. Catal. B: Environ. 2013, 142–143, 504–511.CrossRefGoogle Scholar
  139. [139]
    Bera, K. K.; Majumdar, R.; Chakraborty, M.; Bhattacharya, S. K. Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. J. Hazard. Mater. 2018, 352, 182–191.CrossRefGoogle Scholar
  140. [140]
    Li, K.; Han, M.; Chen, R.; Li, S. L.; Xie, S. L.; Mao, C. Y.; Bu, X. H.; Cao, X. L.; Dong, L. Z.; Feng, P. Y. et al. Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability. Adv. Mater. 2016, 28, 8906–8911.CrossRefGoogle Scholar
  141. [141]
    Chai, Y.; Lu, J. X.; Li, L.; Li, D. L.; Li, M.; Liang, J. TEOA-induced in situ formation of wurtzite and zinc-blende CdS heterostructures as a highly active and long-lasting photocatalyst for converting CO2 into solar fuel. Catal. Sci. Technol. 2018, 8, 2697–2706.CrossRefGoogle Scholar
  142. [142]
    Shen, Q. Q.; Xue, J. B.; Mi, A. M.; Jia, H. S.; Liu, X. G.; Xu, B. S. The study on properties of CdS photocatalyst with different ratios of zincblende and wurtzite structure. RSC Adv. 2013, 3, 20930–20935.CrossRefGoogle Scholar
  143. [143]
    Ai, Z. Z.; Zhao, G.; Zhong, Y. Y.; Shao, Y. L.; Huang, B. B.; Wu, Y. Z.; Hao, X. P. Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation. Appl. Catal. B: Environ. 2018, 221, 179–186.CrossRefGoogle Scholar
  144. [144]
    Fang, Z. B.; Weng, S. X.; Ye, X. X.; Feng, W. H.; Zheng, Z. Y.; Lu, M. L.; Lin, S.; Fu, X. Z.; Liu, P. Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2015, 7, 13915–13924.CrossRefGoogle Scholar
  145. [145]
    Qi, Y. H.; Xu, Q.; Wang, Y.; Yan, B.; Ren, Y. M.; Chen, Z. M. CO2- induced phase engineering: Protocol for enhanced photoelectrocatalytic performance of 2D MoS2 nanosheets. ACS Nano 2016, 10, 2903–2909.CrossRefGoogle Scholar
  146. [146]
    Liu, Y. Y.; Xie, Y.; Liu, L. J.; Jiao, J. L. Sulfur vacancy induced high performance for photocatalytic H2 production over 1T@2H phase MoS2 nanolayers. Catal. Sci. Technol. 2017, 7, 5635–5643.CrossRefGoogle Scholar
  147. [147]
    Zeng, Z. X.; Yu, H. T.; Quan, X.; Chen, S.; Zhang, S. S. Structuring phase junction between tri-s-triazine and triazine crystalline C3N4 for efficient photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 227, 153–160.CrossRefGoogle Scholar
  148. [148]
    Shen, Z. R.; Sun, S. T.; Wang, W. J.; Liu, J. W.; Liu, Z. F.; Yu, J. C. A black–red phosphorus heterostructure for efficient visible-light-driven photocatalysis. J. Mater. Chem. A 2015, 3, 3285–3288.CrossRefGoogle Scholar
  149. [149]
    Liu, D.; Wang, J.; Zhang, M.; Liu, Y. F.; Zhu, Y. F. A superior photocatalytic performance of a novel Bi2SiO5 flower-like microsphere via a phase junction. Nanoscale 2014, 6, 15222–15227.CrossRefGoogle Scholar
  150. [150]
    Lv, C. D.; Chen, G.; Sun, J. X.; Zhou, Y. S. Construction of α–β phase junction on Bi4V2O11 via electrospinning retardation effect and its promoted photocatalytic performance. Inorg. Chem. 2016, 55, 4782–4789.CrossRefGoogle Scholar
  151. [151]
    Xu, J.; Mao, Y. G.; Liu, T.; Peng, Y. Synthesis of a novel one-dimensional BiOBr–Bi4O5Br2 heterostructure with a high quality interface and its enhanced visible-light photocatalytic activity. CrystEngComm 2018, 20, 2292–2298.CrossRefGoogle Scholar
  152. [152]
    Zhu, Y. Y.; Liu, Y. F.; Lv, Y. H.; Ling, Q.; Liu, D.; Zhu, Y. F. Enhancement of photocatalytic activity for BiPO4 via phase junction. J. Mater. Chem. A 2014, 2, 13041–13048.CrossRefGoogle Scholar
  153. [153]
    Cheng, J.; Feng, J.; Pan, W. Enhanced photocatalytic activity in electrospun bismuth vanadate nanofibers with phase junction. ACS Appl. Mater. Interfaces 2015, 7, 9638–9644.CrossRefGoogle Scholar
  154. [154]
    Yan, M.; Yan, Y.; Wu, Y. L.; Shi, W. D.; Hua, Y. Q. Microwave-assisted synthesis of monoclinic–tetragonal BiVO4 heterojunctions with enhanced visible-light-driven photocatalytic degradation of tetracycline. RSC Adv. 2015, 5, 90255–90264.CrossRefGoogle Scholar
  155. [155]
    Li, W. J.; Wang, X.; Wang, Z.; Meng, Y.; Sun, X. L.; Yan, T. J.; You, J. M.; Kong, D. S. Relationship between crystalline phases and photocatalytic activities of BiVO4. Mater. Res. Bull. 2016, 83, 259–267.CrossRefGoogle Scholar
  156. [156]
    Usai, S.; Obregón, S.; Becerro, A. I.; Colon, G. Monoclinic–tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. J. Phys. Chem. C 2013, 117, 24479–24484.CrossRefGoogle Scholar
  157. [157]
    Wang, P.; Chen, P. R.; Kostka, A.; Marschall, R.; Wark, M. Control of phase coexistence in calcium tantalate composite photocatalysts for highly efficient hydrogen production. Chem. Mater. 2013, 25, 4739–4745.CrossRefGoogle Scholar
  158. [158]
    Qu, Y.; Zhou, W.; Xie, Y.; Jiang, L.; Wang, J. Q.; Tian, G. H.; Ren, Z. Y.; Tian, C. G.; Fu, H. G. A novel phase-mixed MgTiO3–MgTi2O5 heterogeneous nanorod for high efficiency photocatalytic hydrogen production. Chem. Commun. 2013, 49, 8510–8512.CrossRefGoogle Scholar
  159. [159]
    Li, P.; Xu, H.; Liu, L. Q.; Kako, T.; Umezawa, N.; Abe, H.; Ye, J. H. Constructing cubic–orthorhombic surface-phase junctions of NaNbO3 towards significant enhancement of CO2 photoreduction. J. Mater. Chem. A 2014, 2, 5606–5609.CrossRefGoogle Scholar
  160. [160]
    Sun, F.; Wang, P.; Yi, Z. X.; Wark, M.; Yang, J. H.; Wang, X. Y. Construction of strontium tantalate homo-semiconductor composite photocatalysts with a tunable type II junction structure for overall water splitting. Catal. Sci. Technol. 2018, 8, 3025–3033.CrossRefGoogle Scholar
  161. [161]
    Wang, J. G.; Chen, Y. J.; Zhou, W.; Tian, G. H.; Xiao, Y. T.; Fu, H. Y.; Fu, H. G. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junctions for exceptional visible-light-driven photocatalytic H2 evolution. J. Mater. Chem. A 2017, 5, 8451–8460.CrossRefGoogle Scholar
  162. [162]
    Chen, Y. J.; He, J.; Li, J. J.; Mao, M. Q.; Yan, Z. Y.; Wang, W.; Wang, J. Q. Hydrilla derived ZnIn2S4 photocatalyst with hexagonal-cubic phase junctions: A bio-inspired approach for H2 evolution. Catal. Commun. 2016, 87, 1–5.CrossRefGoogle Scholar
  163. [163]
    Kaplan, R.; Erjavec, B.; Dražić, G.; Grdadolnik, J.; Pintar, A. Simple synthesis of anatase/rutile/brookite TiO2 nanocomposite with superior mineralization potential for photocatalytic degradation of water pollutants. Appl. Catal. B: Environ. 2016, 181, 465–474.CrossRefGoogle Scholar
  164. [164]
    Preethi, L. K.; Mathews, T.; Nand, M.; Jha, S. N.; Gopinath, C. S.; Dash, S. Band alignment and charge transfer pathway in three phase anatase-rutile-brookite TiO2 nanotubes: An efficient photocatalyst for water splitting. Appl. Catal. B: Environ. 2017, 218, 9–19.CrossRefGoogle Scholar
  165. [165]
    Liao, Y. L.; Que, W. X.; Jia, Q. Y.; He, Y. C.; Zhang, J.; Zhong, P. Controllable synthesis of brookite/anatase/rutile TiO2 nanocomposites and single-crystalline rutile nanorods array. J. Mater. Chem. 2012, 22, 7937–7944.CrossRefGoogle Scholar
  166. [166]
    Sun, M. X.; Kong, Y. Y.; Fang, Y. L.; Sood, S.; Yao, Y.; Shi, J. F.; Umar, A. Hydrothermal formation of N/Ti3+ codoped multiphasic (brookite–anatase–rutile) TiO2 heterojunctions with enhanced visible light driven photocatalytic performance. Dalton Trans. 2017, 46, 15727–15735.CrossRefGoogle Scholar
  167. [167]
    Mutuma, B. K.; Shao, G. N.; Kim, W. D.; Kim, H. T. Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. J. Colloid Interface Sci. 2015, 442, 1–7.CrossRefGoogle Scholar
  168. [168]
    An, X. Q.; Hu, C. Z.; Liu, H. J.; Qu, J. H. Hierarchical nanotubular anatase/rutile/TiO2(B) heterophase junction with oxygen vacancies for enhanced photocatalytic H2 Production. Langmuir 2018, 34, 1883–1889.CrossRefGoogle Scholar
  169. [169]
    Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C. Nanostructured Ti1−xSxO2−yNy heterojunctions for efficient visible-light-induced photocatalysis. Inorg. Chem. 2012, 51, 7164–7173.CrossRefGoogle Scholar
  170. [170]
    Peng, R.; Liang, L. B.; Hood, Z. D.; Boulesbaa, A.; Puretzky, A.; Ievlev, A. V.; Come, J.; Ovchinnikova, O. S.; Wang, H.; Ma, C. et al. In-plane heterojunctions enable multiphasic two-dimensional (2D) MoS2 nanosheets as efficient photocatalysts for hydrogen evolution from water reduction. ACS Catal. 2016, 6, 6723–6729.CrossRefGoogle Scholar
  171. [171]
    Miyagi, T.; Kamei, M.; Mitsuhashi, T.; Ishigaki, T.; Yamazaki, A. Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chem. Phys. Lett. 2004, 390, 399–402.CrossRefGoogle Scholar
  172. [172]
    Kang, J.; Wu, F. M.; Li, S. S.; Xia, J. B.; Li, J. B. Calculating band alignment between materials with different structures: The case of anatase and rutile titanium dioxide. J. Phys. Chem. C 2012, 116, 20765–20768.CrossRefGoogle Scholar
  173. [173]
    Zhou, Y.; Chen, C. H.; Wang, N. N.; Li, Y. Y.; Ding, H. M. Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability. J. Phys. Chem. C 2016, 120, 6116–6124.CrossRefGoogle Scholar
  174. [174]
    Kullgren, J.; Aradi, B.; Frauenheim, T.; Kavan, L.; Deak, P. Resolving the controversy about the band alignment between rutile and anatase: The role of OH–/H+ adsorption. J. Phys. Chem. C 2015, 119, 21952–21958.CrossRefGoogle Scholar
  175. [175]
    Quesada-Cabrera, R.; Sotelo-Vazquez, C.; Bear, J. C.; Darr, J. A.; Parkin, I. P. Photocatalytic evidence of the rutile-to-anatase electron transfer in titania. Adv. Mater. Interfaces 2014, 1, 1400069.CrossRefGoogle Scholar
  176. [176]
    Shingai, D.; Ide, Y.; Sohn, W. Y.; Katayama, K. Photoexcited charge carrier dynamics of interconnected TiO2 nanoparticles: Evidence of enhancement of charge separation at anatase–rutile particle interfaces. Phys. Chem. Chem. Phys. 2018, 20, 3484–3489.CrossRefGoogle Scholar
  177. [177]
    Gao, Y. Y.; Zhu, J.; An, H. Y.; Yan, P. L.; Huang, B. K.; Chen, R. T.; Fan, F. T.; Li, C. Directly probing charge separation at interface of TiO2 phase junction. J. Phys. Chem. Lett. 2017, 8, 1419–1423.CrossRefGoogle Scholar
  178. [178]
    Pfeifer, V.; Erhart, P.; Li, S. Y.; Rachut, K.; Morasch, J.; Brötz, J.; Reckers, P.; Mayer, T.; Rühle, S.; Zaban, A. et al. Energy band alignment between anatase and rutile TiO2. J. Phys. Chem. Lett. 2013, 4, 4182–4187.CrossRefGoogle Scholar
  179. [179]
    Ko, K. C.; Bromley, S. T.; Lee, J. Y.; Illas, F. Size-dependent level alignment between rutile and anatase TiO2 nanoparticles: Implications for photocatalysis. J. Phys. Chem. Lett. 2017, 8, 5593–5598.CrossRefGoogle Scholar
  180. [180]
    Zhang, D. Y.; Yang, M. N.; Dong, S. Electric-dipole effect of defects on the energy band alignment of rutile and anatase TiO2. Phys. Chem. Chem. Phys. 2015, 17, 29079–29084.CrossRefGoogle Scholar
  181. [181]
    Cottineau, T.; Cachet, H.; Keller, V.; Sutter, E. M. M. Influence of the anatase/rutile ratio on the charge transport properties of TiO2-NTs arrays studied by dual wavelength opto-electrochemical impedance spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 31469–31478.CrossRefGoogle Scholar
  182. [182]
    Carneiro, J. T.; Savenije, T. J.; Moulijn, J. A.; Mul, G. How phase composition influences optoelectronic and photocatalytic properties of TiO2. J. Phys. Chem. C 2011, 115, 2211–2217.CrossRefGoogle Scholar
  183. [183]
    Su, R.; Bechstein, R.; Sø, L.; Vang, R. T.; Sillassen, M.; Esbjornsson, B.; Palmqvist, A.; Besenbacher, F. How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 2011, 115, 24287–24292.CrossRefGoogle Scholar
  184. [184]
    Wang, W. K.; Chen, J. J.; Gao, M.; Huang, Y. X.; Zhang, X.; Yu, H. Q. Photocatalytic degradation of atrazine by boron-doped TiO2 with a tunable rutile/anatase ratio. Appl. Catal. B: Environ. 2016, 195, 69–76.CrossRefGoogle Scholar
  185. [185]
    Wang, X.; Jin, S. Q.; An, H. Y.; Wang, X. L.; Feng, Z. C.; Li, C. Relation between the photocatalytic and photoelectrocatalytic performance for the particulate semiconductor-based photoconversion systems with surface phase junction structure. J. Phys. Chem. C 2015, 119, 22460–22464.CrossRefGoogle Scholar
  186. [186]
    Li, A. L.; Wang, Z. L.; Yin, H.; Wang, S. Y.; Yan, P. L.; Huang, B. K.; Wang, X. L.; Li, R. G.; Zong, X.; Han, H. X. et al. Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO2 electrode for photoelectrochemical water splitting. Chem. Sci. 2016, 7, 6076–6082.CrossRefGoogle Scholar
  187. [187]
    Liu, M. C.; Jing, D. W.; Zhou, Z. H.; Guo, L. J. Twin-induced onedimensional homojunctions yield high quantum efficiency for solar hydrogen generation. Nat. Commun. 2013, 4, 2278.CrossRefGoogle Scholar
  188. [188]
    Liu, M. C.; Wang, L. Z.; Lu, G. Q.; Yao, X. D.; Guo, L. J. Twins in Cd1−xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy Environ. Sci. 2011, 4, 1372–1378.CrossRefGoogle Scholar
  189. [189]
    He, K.; Wang, M.; Guo, L. J. Novel-CdS-nanorod with stacking fault structures: Preparation and properties of visible-light-driven photocatalytic hydrogen production from water. Chem. Eng. J. 2015, 279, 747–756.CrossRefGoogle Scholar
  190. [190]
    Du, H.; Liang, K.; Yuan, C. Z.; Guo, H. L.; Zhou, X.; Jiang, Y. F.; Xu, A. W. Bare Cd1–xZnxS ZB/WZ heterophase nanojunctions for visible light photocatalytic hydrogen production with high efficiency. ACS Appl. Mater. Interfaces 2016, 8, 24550–24558.CrossRefGoogle Scholar
  191. [191]
    Dong, W. Y.; Liu, Y. T.; Zeng, G. M.; Zhang, S. Q.; Cai, T.; Yuan, J. L.; Chen, H.; Gao, J.; Liu, C. B. Regionalized and vectorial charges transferring of Cd1−xZnxS twin nanocrystal homojunctions for visible-light driven photocatalytic applications. J. Colloid Interface Sci. 2018, 518, 156–164.CrossRefGoogle Scholar
  192. [192]
    Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. The effect of gold loading and particle size on photocatalytic hydrogen production from ethanol over Au/TiO2 nanoparticles. Nat. Chem. 2011, 3, 489–492.CrossRefGoogle Scholar
  193. [193]
    Li, H. H.; Yin, S.; Wang, Y. H.; Sato, T. Effect of phase structures of TiO2−xNy on the photocatalytic activity of CaAl2O4: (Eu, Nd)-coupled TiO2−xNy. J. Catal. 2012, 286, 273–278.CrossRefGoogle Scholar
  194. [194]
    Wong, T. J.; Lim, F. J.; Gao, M. M.; Lee, G. H.; Ho, G. W. Photocatalytic H2 production of composite one-dimensional TiO2 nanostructures of different morphological structures and crystal phases with graphene. Catal. Sci. Technol. 2013, 3, 1086–1093.CrossRefGoogle Scholar
  195. [195]
    Réti, B.; Major, Z.; Szarka, D.; Boldizsár, T.; Horváth, E.; Magrez, A.; Forró, L.; Dombi, A.; Hernádi, K. Influence of TiO2 phase composition on the photocatalytic activity of TiO2/MWCNT composites prepared by combined sol–gel/hydrothermal method. J. Mol. Catal. A: Chem. 2016, 414, 140–147.CrossRefGoogle Scholar
  196. [196]
    Tanabe, I.; Ryoki, T.; Ozaki, Y. Significant enhancement of photocatalytic activity of rutile TiO2 compared with anatase TiO2 upon Pt nanoparticle deposition studied by far-ultraviolet spectroscopy. Phys. Chem. Chem. Phys. 2014, 16, 7749–7753.CrossRefGoogle Scholar
  197. [197]
    Song, C. K.; Baek, J.; Kim, T. Y.; Yu, S.; Han, J. W.; Yi, J. Exploring crystal phase and morphology in the TiO2 supporting materials used for visible-light driven plasmonic photocatalyst. Appl. Catal. B: Environ. 2016, 198, 91–99.CrossRefGoogle Scholar
  198. [198]
    Zhao, J.; Wang, Y.; Li, Y. X.; Yue, X.; Wang, C. Y. Phase-dependent enhancement for CO2 photocatalytic reduction over CeO2/TiO2 catalysts. Catal. Sci. Technol. 2016, 6, 7967–7975.CrossRefGoogle Scholar
  199. [199]
    Bai, S.; Yin, W. J.; Wang, L. L.; Li, Z. Q.; Xiong, Y. J. Surface and interface design in cocatalysts for photocatalytic water splitting and CO2 reduction. RSC Adv. 2016, 6, 57446–57463.CrossRefGoogle Scholar
  200. [200]
    Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.CrossRefGoogle Scholar
  201. [201]
    Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.CrossRefGoogle Scholar
  202. [202]
    Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.CrossRefGoogle Scholar
  203. [203]
    Bai, S.; Wang, L. M.; Chen, X. Y.; Du, J. T.; Xiong, Y. J. Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Res. 2015, 8, 175–183.CrossRefGoogle Scholar
  204. [204]
    Liu, Q.; Li, X. L.; He, Q.; Khalil, A.; Liu, D. B.; Xiang, T.; Wu, X. J.; Song, L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: Applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11, 5556–5564.CrossRefGoogle Scholar
  205. [205]
    Wu, C. Q.; Fang, Q.; Liu, Q.; Liu, D. B.; Wang, C. D.; Xiang, T.; Khalil, A.; Chen, S. M.; Song, L. Engineering interfacial charge-transfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorg. Chem. Front. 2017, 4, 663–667.CrossRefGoogle Scholar
  206. [206]
    Cheng, H. F.; Yang, N. L.; Lu, Q. P.; Zhang, Z. C.; Zhang, H. Syntheses and properties of metal nanomaterials with novel crystal phases. Adv. Mater. 2018, 30, 1707189.CrossRefGoogle Scholar
  207. [207]
    Ye, F.; Wang, F.; Meng, C. C.; Bai, L. J.; Li, J. Y.; Xing, P. X.; Teng, B. T.; Zhao, L. H.; Bai, S. Crystalline phase engineering on cocatalysts: A promising approach to enhancement on photocatalytic conversion of carbon dioxide to fuels. Appl. Catal. B: Environ. 2018, 230, 145–153.CrossRefGoogle Scholar
  208. [208]
    Cai, X. T.; Wang, A.; Wang, J. W.; Wang, R. X.; Zhong, S. X.; Zhao, Y. L.; Wu, L. J.; Chen, J. R.; Bai, S. Order engineering on the lattice of intermetallic PdCu co-catalysts for boosting the photocatalytic conversion of CO2 into CH4. J. Mater. Chem. A 2018, 6, 17444–17456.CrossRefGoogle Scholar
  209. [209]
    Zhu, Y. Z.; Gao, C.; Bai, S.; Chen, S. M.; Long, R.; Song, L.; Li, Z. Q.; Xiong, Y. J. Hydriding Pd cocatalysts: An approach to giant enhancement on photocatalytic CO2 reduction into CH4. Nano Res. 2017, 10, 3396–3406.CrossRefGoogle Scholar
  210. [210]
    Priebe, J. B.; Radnik, J.; Lennox, A. J. J.; Pohl, M. M.; Karnahl, M.; Hollmann, D.; Grabow, K.; Bentrup, U.; Junge, H.; Beller, M. et al. Solar hydrogen production by plasmonic Au–TiO2 catalysts: Impact of synthesis protocol and TiO2 phase on charge transfer efficiency and H2 evolution rates. ACS Catal. 2015, 5, 2137–2148.CrossRefGoogle Scholar
  211. [211]
    Wen, Y.; Liu, B. T.; Zeng, W.; Wang, Y. H. Plasmonic photocatalysis properties of Au nanoparticles precipitated anatase/rutile mixed TiO2 nanotubes. Nanoscale 2013, 5, 9739–9746.CrossRefGoogle Scholar
  212. [212]
    Zhou, J.; Tian, G. H.; Chen, Y. J.; Wang, J. Q.; Cao, X. R.; Shi, Y. H.; Pan, K.; Fu, H. G. Synthesis of hierarchical TiO2 nanoflower with anatase–rutile heterojunction as Ag support for efficient visible-light photocatalytic activity. Dalton Trans. 2013, 42, 11242–11251.CrossRefGoogle Scholar
  213. [213]
    Tay, Q.; Wang, X. H.; Zhao, X.; Hong, J. D.; Zhang, Q.; Xu, R.; Chen, Z. Enhanced visible light hydrogen production via a multiple heterojunction structure with defect-engineered g-C3N4 and two-phase anatase/brookite TiO2. J. Catal. 2016, 342, 55–62.CrossRefGoogle Scholar
  214. [214]
    Pan, Y. X.; Zhou, T. H.; Han, J. Y.; Hong, J. D.; Wang, Y. B.; Zhang, W.; Xu, R. CdS quantum dots and tungsten carbide supported on anatase–rutile composite TiO2 for highly efficient visible-light-driven photocatalytic H2 evolution from water. Catal. Sci. Technol. 2016, 6, 2206–2213.CrossRefGoogle Scholar
  215. [215]
    Pathak, P.; Israel, L. H.; Pereira, E. J. M.; Subramanian, V. R. Effects of carbon allotrope interface on the photoactivity of rutile one-dimensional (1D) TiO2 coated with anatase TiO2 and sensitized with CdS nanocrystals. ACS Appl. Mater. Interfaces 2016, 8, 13400–13409.CrossRefGoogle Scholar
  216. [216]
    Boppella, R.; Basak, P.; Manorama, S. V. Viable method for the synthesis of biphasic TiO2 nanocrystals with tunable phase composition and enabled visible-light photocatalytic performance. ACS Appl. Mater. Interfaces 2012, 4, 1239–1246.CrossRefGoogle Scholar
  217. [217]
    Ma, Y.; Xu, Q.; Zong, X.; Wang, D. E.; Wu, G. P.; Wang, X.; Li, C. Photocatalytic H2 production on Pt/TiO2–SO4 2− with tuned surface-phase structures: Enhancing activity and reducing CO formation. Energy Environ. Sci. 2012, 5, 6345–6351.CrossRefGoogle Scholar
  218. [218]
    Xu, Q.; Ma, Y.; Zhang, J.; Wang, X. L.; Feng, Z. C.; Li, C. Enhancing hydrogen production activity and suppressing CO formation from photocatalytic biomass reforming on Pt/TiO2 by optimizing anatase–rutile phase structure. J. Catal. 2011, 278, 329–335.CrossRefGoogle Scholar
  219. [219]
    Li, M. L.; Wang, M.; Zhu, L. F.; Li, Y. M.; Yan, Z.; Shen, Z. Q.; Cao, X. B. Facile microwave assisted synthesis of N-rich carbon quantum dots/ dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction. Appl. Catal. B: Environ. 2018, 231, 269–276.CrossRefGoogle Scholar
  220. [220]
    Tay, Q.; Chen, Z. Effective charge separation towards enhanced photocatalytic activity via compositing reduced graphene oxide with two-phase anatase/ brookite TiO2. Int. J. Hydrogen Energy 2016, 41, 10590–10597.CrossRefGoogle Scholar
  221. [221]
    Bai, Y.; Li, W.; Liu, C.; Yang, Z. H.; Feng, X.; Lu, X. H.; Chan, K. Y. Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture. J. Mater. Chem. 2009, 19, 7055–7061.CrossRefGoogle Scholar
  222. [222]
    Silva, L. A.; Ryu, S. Y.; Choi, J.; Choi, W.; Hoffmann, M. R. Photocatalytic hydrogen production with visible light over Pt-interlinked hybrid composites of cubic-phase and hexagonal-phase CdS. J. Phys. Chem. C 2008, 112, 12069–12073.CrossRefGoogle Scholar
  223. [223]
    Liu, M. C.; Chen, Y. B.; Su, J. Z.; Shi, J. W.; Wang, X. X.; Guo, L. J. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151.CrossRefGoogle Scholar
  224. [224]
    Song, J. G.; Zhao, H. T.; Sun, R. R.; Li, X. Y.; Sun, D. J. An efficient hydrogen evolution catalyst composed of palladium phosphorous sulphide (PdP~0.33S~1.67) and twin nanocrystal Zn0.5Cd0.5S solid solution with both homo- and hetero-junctions. Energy Environ. Sci. 2017, 10, 225–235.CrossRefGoogle Scholar
  225. [225]
    Xiao, F. X.; Miao, J. W.; Liu, B. Self-assembly of aligned rutile@anatase TiO2 nanorod@CdS quantum dots ternary core–shell heterostructure: Cascade electron transfer by interfacial design. Mater. Horiz. 2014, 1, 259–263.CrossRefGoogle Scholar
  226. [226]
    Ziarati, A.; Badiei, A.; Ziarani, G. M.; Eskandarloo, H. Simultaneous photocatalytic and catalytic activity of p–n junction NiO@anatase/ rutile-TiO2 as a noble-metal free reusable nanoparticle for synthesis of organic compounds. Catal. Commun. 2017, 95, 77–82.CrossRefGoogle Scholar
  227. [227]
    Yang, J. S.; Wu, J. J. Toward eco-friendly and highly efficient solar water splitting using In2S3/anatase/rutile TiO2 dual-staggered-heterojunction nanodendrite array photoanode. ACS Appl. Mater. Interfaces 2018, 10, 3714–3722.CrossRefGoogle Scholar
  228. [228]
    Zhao, W. R.; Zhang, M.; Ai, Z. Y.; Yang, Y. A.; Xi, H. P.; Shi, Q. M.; Xu, X. H.; Shi, H. X. Synthesis, characterization, and photocatalytic properties of SnO2/rutile TiO2/anatase TiO2 heterojunctions modified by Pt. J. Phys. Chem. C 2014, 118, 23117–23125.CrossRefGoogle Scholar
  229. [229]
    Zhou, X.; Wu, J.; Li, Q. F.; Qi, Y. F.; Ji, Z.; He, P.; Qi, X. M.; Sheng, P. F.; Li, Q. W.; Ren, J. X. Improved electron-hole separation and migration in V2O5/rutile-anatase photocatalyst system with homo-hetero junctions and its enhanced photocatalytic performance. Chem. Eng. J. 2017, 330, 294–308.CrossRefGoogle Scholar
  230. [230]
    Guo, Y.; Wang, P. F.; Qian, J.; Hou, J.; Ao, Y. H.; Wang, C. Construction of a composite photocatalyst with significantly enhanced photocatalytic performance through combination of homo-junction with hetero-junction. Catal. Sci. Technol. 2018, 8, 486–498.CrossRefGoogle Scholar
  231. [231]
    Liu, H. Y.; Wu, R.; Tian, L.; Kong, Y. Y.; Sun, Y. F. Synergetic photocatalytic effect between 1 T@2H-MoS2 and plasmon resonance induced by Ag quantum dots. Nanotechnology 2018, 29, 285402.CrossRefGoogle Scholar
  232. [232]
    Yu, Y.; Wen, W.; Qian, X. Y.; Liu, J. B.; Wu, J. M. UV and visible light photocatalytic activity of Au/TiO2 nanoforests with Anatase/Rutile phase junctions and controlled Au locations. Sci. Rep. 2017, 7, 41253.CrossRefGoogle Scholar
  233. [233]
    Xu, F. Y.; Xiao, W.; Cheng, B.; Yu, J. G. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H2-production activity. Int. J. Hydrogen Energy 2014, 39, 15394–15402.CrossRefGoogle Scholar
  234. [234]
    Zhou, P.; Yu, J. G.; Jaroniec, M. All-solid-state Z-Scheme photocatalytic systems. Adv. Mater. 2014, 26, 4920–4935.CrossRefGoogle Scholar
  235. [235]
    Li, H. J.; Tu, W. G.; Zhou, Y.; Zou, Z. G. Z-Scheme photocatalytic systems for promoting photocatalytic performance: Recent progress and future challenges. Adv. Sci. 2016, 3, 1500389.CrossRefGoogle Scholar
  236. [236]
    Li, Y. R.; Li, L. L.; Gong, Y. Q.; Bai, S.; Ju, H. X.; Wang, C. M.; Xu, Q.; Zhu, J. F.; Jiang, J.; Xiong, Y. J. Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Res. 2015, 8, 3621–3629.CrossRefGoogle Scholar
  237. [237]
    Yan, Y.; Wang, C.; Yan, X.; Xiao, L. S.; He, J. H.; Gu, W.; Shi, W. D. Graphene acting as surface phase junction in anatase–graphene–rutile heterojunction photocatalysts for H2 production from water splitting. J. Phys. Chem. C 2014, 118, 23519–23526.CrossRefGoogle Scholar
  238. [238]
    Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.CrossRefGoogle Scholar
  239. [239]
    Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung C. H.; O’Hare D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.CrossRefGoogle Scholar
  240. [240]
    Li, M. Q.; Huang, H.; Low, J.; Gao, C.; Long, R.; Xiong, Y. J. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods, in press, DOI: 10.1002/smtd.201800388.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Institute of Physical and ChemistryZhejiang Normal UniversityJinhuaChina
  2. 2.Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations