All in one theranostic nanoplatform enables efficient anti-tumor peptide delivery for triple-modal imaging guided cancer therapy

  • Xiaoyan Qu
  • Zhengqing Liu
  • Bohan Ma
  • Na Li
  • Hongyang Zhao
  • Tian Yang
  • Yumeng Xue
  • Xiaozhi Zhang
  • Yongping Shao
  • Ying Chang
  • Jun Xu
  • Bo LeiEmail author
  • Yaping DuEmail author
Research Article


Developing a reliable system to efficiently and safely deliver peptide drugs into tumor tissues still remains a great challenge since the instability of peptide drugs and low ability to traverse the cell membrane. Herein, we constructed a multifunctional nanoplatform based on porous europium/gadolinium (Eu/Gd)-doped NaLa(MoO4)2 nanoparticles (NLM NPs) to deliver antitumor peptide of B-cell lymphoma/leukemia-2-like protein 11 (BIM) for cancer therapy. The porous NLM NPs exhibited inherent photoluminescent, magnetic and X-ray absorbable properties, which enable them for triple-modal bioimaging, including fluorescence, magnetic resonance imaging (MRI) and computed tomography (CT). This triple-modal bioimaging can contribute to monitoring NLM NPs biodistribution and guiding therapy in vitro and in vivo. Furthermore, the NLM NPs showed negligible cytotoxicity in vitro and tissue toxicity in vivo. Importantly, NLM NPs could load the antitumor peptide of BIM and efficiently improve the resistance of peptide drugs to proteolysis. The BIM peptide was efficiently delivered into the tumor cells by NLM NPs, which can inhibit the growth and promote the apoptosis of cancer cells in vitro, significantly inhibit the tumor growth in vivo. Notably, NLM-BIM theranostic nanoplatform exhibits low systemic toxicity and fewer side effects in vivo. The NLM NPs can serve as a promising multifunctional peptide delivery nanoplatform for multi-modal bioimaging and cancer therapy.


rare earth nanoparticles multifunctional property peptide delivery tumor imaging tumor therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We gratefully acknowledge the financial support from the National Key R&D Program of China (No. 2017YFA0208000), the China National Funds for Excellent Young Scientists (No. 21522106), Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University (No. 2018LHM-KFKT004), and National Natural Science Foundation of China (Nos. 51502237, 51872224, and U1501245). We also appreciate Dr. Dong Su from the Center for Functional Nanomaterials at Brookhaven National Laboratory for his kind help in Electron Microscopy (EM) work.

Supplementary material

12274_2018_2261_MOESM1_ESM.pdf (2.3 mb)
Electronic Supplementary Material


  1. [1]
    Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, Á. Assessment of the evolution of cancer treatment therapies. Cancers 2011, 3, 3279–3330.CrossRefGoogle Scholar
  2. [2]
    Niu, F.; Yan, J.; Ma, B. H.; Li, S. C.; Shao, Y. P.; He, P. C.; Zhang, W. G.; He, W. X.; Ma, P. X.; Lu, W. Y. Lanthanide-doped nanoparticles conjugated with an anti-CD33 antibody and a p53-activating peptide for acute myeloid leukemia therapy. Biomaterials 2018, 167, 132–142.CrossRefGoogle Scholar
  3. [3]
    Rhodes, C. A.; Pei, D. H. Bicyclic peptides as next-generation therapeutics. Chem.—Eur. J. 2017, 23, 12690–12703.CrossRefGoogle Scholar
  4. [4]
    Yan, J.; He, W. X.; Yan, S. Q.; Niu, F.; Liu, T. Y.; Ma, B. H.; Shao, Y. P.; Yan, Y. W.; Yang, G.; Lu, W. Y. et al. Self-assembled peptide-lanthanide nanoclusters for safe tumor therapy: Overcoming and utilizing biological barriers to peptide drug delivery. ACS Nano 2018, 12, 2017–2026.CrossRefGoogle Scholar
  5. [5]
    Buckley, C. D.; Pilling, D.; Henriquez, N. V.; Parsonage, G.; Threlfall, K.; Scheel-Toellner, D.; Simmons, D. L.; Akbar, A. N.; Lord, J. M.; Salmon, M. RGD peptides induce apoptosis by direct caspase-3 activation. Nature 1999, 397, 534–539.CrossRefGoogle Scholar
  6. [6]
    Laakkonen, P.; Åkerman, M. E.; Biliran, H.; Yang, M.; Ferrer, F.; Karpanen, T.; Hoffman, R. M.; Ruoslahti, E. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells. Proc. Natl. Acad. Sci. USA 2004, 101, 9381–9386.CrossRefGoogle Scholar
  7. [7]
    Reed, J. C. Apoptosis-targeted therapies for cancer. Cancer Cell 2003, 3, 17–22.CrossRefGoogle Scholar
  8. [8]
    Gaspar, D.; Veiga, A. S.; Castanho, M. A. R. B. From antimicrobial to anticancer peptides. A review. Front. Microbiol. 2013, 4, 294.Google Scholar
  9. [9]
    Öberg, K.; Kvols, L.; Caplin, M.; Delle Fave, G.; de Herder, W.; Rindi, G.; Ruszniewski, P.; Woltering, E. A.; Wiedenmann, B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann. Oncol. 2004, 15, 966–973.CrossRefGoogle Scholar
  10. [10]
    Hemmings, H. C.; Egan, T. D. Pharmacology and Physiology for Anesthesia: Foundations and Clinical Application; Elsevier: Philadephia, 2013.Google Scholar
  11. [11]
    Caplin, M. E.; Pavel, M.; Ćwikła, J. B.; Phan, A. T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E. M.; Capdevila, J.; Wall, L. et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233.CrossRefGoogle Scholar
  12. [12]
    Frokjaer, S.; Otzen, D. E. Protein drug stability: A formulation challenge. Nat. Rev. Drug Discov. 2005, 4, 298–306.CrossRefGoogle Scholar
  13. [13]
    Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128.CrossRefGoogle Scholar
  14. [14]
    Yan, J.; He, W. X.; Li, N.; Yu, M.; Du, Y. P.; Lei, B.; Ma, P. X. Simultaneously targeted imaging cytoplasm and nucleus in living cell by biomolecules capped ultra-small GdOF nanocrystals. Biomaterials 2015, 59, 21–29.CrossRefGoogle Scholar
  15. [15]
    Giner-Casares, J. J.; Henriksen-Lacey, M.; Coronado-Puchau, M.; Liz-Marzán, L. M. Inorganic nanoparticles for biomedicine: Where materials scientists meet medical research. Mater. Today 2016, 19, 19–28.CrossRefGoogle Scholar
  16. [16]
    Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.CrossRefGoogle Scholar
  17. [17]
    Ge, J.; Liu, K.; Niu, W.; Chen, M.; Wang, M.; Xue, Y. M.; Gao, C. H.; Ma, P. X.; Lei, B. Gold and gold-silver alloy nanoparticles enhance the myogenic differentiation of myoblasts through p38 MAPK signaling pathway and promote in vivo skeletal muscle regeneration. Biomaterials 2018, 175, 19–29.CrossRefGoogle Scholar
  18. [18]
    Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.CrossRefGoogle Scholar
  19. [19]
    Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F.; Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2008, 2, 889–896.CrossRefGoogle Scholar
  20. [20]
    Shi, J. J.; Wang, L.; Gao, J.; Liu, Y.; Zhang, J.; Ma, R.; Liu, R. Y.; Zhang, Z. Z. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials 2014, 35, 5771–5784.CrossRefGoogle Scholar
  21. [21]
    Liu, C. Y.; Hou, Y.; Gao, M. Y. Are rare-earth nanoparticles suitable for in vivo applications? Adv. Mater. 2014, 26, 6922–6932.CrossRefGoogle Scholar
  22. [22]
    Sun, Y.; Yu, M. X.; Liang, S.; Zhang, Y. J.; Li, C. G.; Mou, T. T.; Yang, W. J.; Zhang, X. Z.; Li, B.; Huang, C. H. et al. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node. Biomaterials 2011, 32, 2999–3007.CrossRefGoogle Scholar
  23. [23]
    Meiser, F.; Cortez, C.; Caruso, F. Biofunctionalization of fluorescent rareearth-doped lanthanum phosphate colloidal nanoparticles. Angew. Chem., Int. Ed. 2004, 43, 5954–5957.CrossRefGoogle Scholar
  24. [24]
    Wang, M.; Mi, C. C.; Zhang, Y. X.; Liu, J. L.; Li, F.; Mao, C. B.; Xu, S. K. NIR-responsive silica-coated NaYbF4: Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J. Phys. Chem. C 2009, 113, 19021–19027.CrossRefGoogle Scholar
  25. [25]
    Yang, G. B.; Gong, H.; Liu, T.; Sun, X. Q.; Cheng, L.; Liu, Z. Twodimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials 2015, 60, 62–71.CrossRefGoogle Scholar
  26. [26]
    Mishra, S. K.; Kannan, S. Doxorubicin-conjugated bimetallic silver-gadolinium nanoalloy for multimodal MRI-CT-optical imaging and pH-responsive drug release. ACS Biomater. Sci. Eng. 2017, 3, 3607–3619.CrossRefGoogle Scholar
  27. [27]
    Bu, W. B.; Chen, Z. X.; Chen, F.; Shi, J. L. Oleic acid/oleylamine cooperativecontrolled crystallization mechanism for monodisperse tetragonal bipyramid NaLa(MoO4)2 nanocrystals. J. Phys. Chem. C 2009, 113, 12176–12185.CrossRefGoogle Scholar
  28. [28]
    Kale, J.; Osterlund, E. J.; Andrews, D. W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2017, 25, 65–80.CrossRefGoogle Scholar
  29. [29]
    LaBelle, J. L.; Katz, S. G.; Bird, G. H.; Gavathiotis, E.; Stewart, M. L.; Lawrence, C.; Fisher, J. K.; Godes, M.; Pitter, K.; Kung, A. L. et al. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. J. Clin. Invest. 2012, 122, 2018–2031.CrossRefGoogle Scholar
  30. [30]
    Adams, J. M. Therapeutic potential of a peptide targeting BCL-2 cell guardians in cancer. J. Clin. Invest. 2012, 122, 1965–1967.CrossRefGoogle Scholar
  31. [31]
    Xu, Z. H.; Li, C. X.; Li, G. G.; Chai, R. T.; Peng, C.; Yang, D. M.; Lin, J. Self-assembled 3D urchin-like NaY(MoO4)2: Eu3+/Tb3+ microarchitectures: Hydrothermal synthesis and tunable emission colors. J. Phys. Chem. C 2010, 114, 2573–2582.CrossRefGoogle Scholar
  32. [32]
    Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331–336.CrossRefGoogle Scholar
  33. [33]
    Ehlerding, E. B.; Chen, F.; Cai, W. B. Biodegradable and renal clearable inorganic nanoparticles. Adv. Sci. 2016, 3, 1500223.CrossRefGoogle Scholar
  34. [34]
    Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.CrossRefGoogle Scholar
  35. [35]
    Liu, Z. Q.; Yin, Z. Y.; Cox, C.; Bosman, M.; Qian, X. F.; Li, N.; Zhao, H. Y.; Du, Y. P.; Li, J.; Nocera, D. G. Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts. Sci. Adv. 2016, 2, e1501425.CrossRefGoogle Scholar
  36. [36]
    Taminiau, T. H.; Karaveli, S.; van Hulst, N. F.; Zia, R. Quantifying the magnetic nature of light emission. Nat. Commun. 2012, 3, 979.CrossRefGoogle Scholar
  37. [37]
    Saha, A.; Mohanta, S. C.; Deka, K.; Deb, P.; Devi, P. S. Surface-engineered multifunctional Eu:Gd2O3 nanoplates for targeted and pH-responsive drug delivery and imaging applications. ACS Appl. Mater. Interfaces 2017, 9, 4126–4141.CrossRefGoogle Scholar
  38. [38]
    Jette, C. A.; Flanagan, A. M.; Ryan, J.; Pyati, U. J.; Carbonneau, S.; Stewart, R. A.; Langenau, D. M.; Look, A. T.; Letai, A. BIM and other BCL-2 family proteins exhibit cross-species conservation of function between zebrafish and mammals. Cell Death Differ. 2008, 15, 1063–1072.CrossRefGoogle Scholar
  39. [39]
    Akiyama, T.; Dass, C. R.; Choong, P. F. M. Bim-targeted cancer therapy: A link between drug action and underlying molecular changes. Mol. Cancer Ther. 2009, 8, 3173–3180.CrossRefGoogle Scholar
  40. [40]
    Dong, L. L.; Zhang, P.; Lei, P. P.; Song, S. Y.; Xu, X.; Du, K. M.; Feng, J.; Zhang, H. J. PEGylated GdF3:Fe nanoparticles as multimodal T1/T2-weighted MRI and X-ray CT imaging contrast agents. ACS Appl. Mater. Interfaces 2017, 9, 20426–20434.CrossRefGoogle Scholar
  41. [41]
    Park, J. Y.; Baek, M. J.; Choi, E. S.; Woo, S.; Kim, J. H.; Kim, T. J.; Jung, J. C.; Chae, K. S.; Chang, Y. M.; Lee, G. H. Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 2009, 3, 3663–3669.CrossRefGoogle Scholar
  42. [42]
    Xue, Y. M.; Du, Y. Z.; Yan, J. Liu, Z. Q.; Ma, P. X.; Chen, X. F.; Lei, B. Monodisperse photoluminescent and highly biocompatible bioactive glass nanoparticles for controlled drug delivery and cell imaging. J. Mater. Chem. B. 2015, 3, 3831–3839.CrossRefGoogle Scholar
  43. [43]
    Lyu, L.; Cheong, H.; Ai, X. Z.; Zhang, W. M.; Li, J.; Yang, H. H.; Lin, J.; Xing, B. G. Near-infrared light-mediated rare-earth nanocrystals: Recent advances in improving photon conversion and alleviating the thermal effect. NPG Asia Mater. 2018, 10, 685–702.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoyan Qu
    • 1
  • Zhengqing Liu
    • 2
  • Bohan Ma
    • 1
  • Na Li
    • 1
    • 4
  • Hongyang Zhao
    • 1
  • Tian Yang
    • 3
  • Yumeng Xue
    • 1
  • Xiaozhi Zhang
    • 3
  • Yongping Shao
    • 1
  • Ying Chang
    • 1
  • Jun Xu
    • 2
  • Bo Lei
    • 1
    Email author
  • Yaping Du
    • 2
    Email author
  1. 1.Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, State Key Laboratory for Manufacturing Systems Engineering, Instrument Analysis CenterXi’an Jiaotong UniversityXi’anChina
  2. 2.School of Materials Science and Engineering, National Institute for Advanced Materials, Center for Rare Earth and Inorganic Functional MaterialsNankai UniversityTianjinChina
  3. 3.Department of Radiation OncologyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  4. 4.Center for Functional NanomaterialsBrookhaven National LaboratoryUptonUSA

Personalised recommendations