Formation mechanism of twin domain boundary in 2D materials: The case for WTe2

  • Guan-Yong Wang
  • Weiyu Xie
  • Dan Xu
  • Hai-Yang Ma
  • Hao Yang
  • Hong Lu
  • Hao-Hua Sun
  • Yao-Yi Li
  • Shuang Jia
  • Liang Fu
  • Shengbai ZhangEmail author
  • Jin-Feng JiaEmail author
Research Article


Our scanning tunneling microscopy (STM) study observes, for the first time, twin domain boundary (TDB) formations on the surface of WTe2 single crystal, which is glued by solidifying indium to Si substrate. In these TDB regions, a large inhomogeneous strain field, especially a critical shear strain of about 7%, is observed by geometric phase analysis. This observation does not obey the old believe that a small mechanical stress is sufficient to drive thermally-induced TDB formations in two-dimensional materials. To resolve the contradiction, we perform density functional theory calculations combined with elasticity theory analysis, which show that TDBs on WTe2 are entirely displacement-induced, for which a critical strain is necessary to overcome the onset barrier.


twin domain boundary scanning tunneling microscopy (STM) density functional theory strain WTe2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank the Ministry of Science and Technology of China (Nos. 2016YFA0301003 and 2016YFA0300403), the National Natural Science Foundation of China (Nos. 11521404, 11634009, U1632102, 11504230, 11674222, 11574202, 11674226, 11574201, 11655002, and U1632272) for partial support. W. Y. X. was supported by the National Science Foundation Award (No. DMR-1305293). S. B. Z. was supported by the US Department of Energy (DOE) (No. DESC0002623). The supercomputer time sponsored by National Energy aesearch Scientific Computing Center (NERSC) under DOE contract (No. DE-AC02-05CH11231) and the Center for Computational Innovations (CCI) at Rensselaer Polytechnic Institute (RPI) are also acknowledged. This project has been supported by a grant from Science and Technology Commission of Shanghai Municipality (No. 16DZ2260200) and the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB28000000).

G.-Y. W. conducted the STM experiments with the help from D. X., H-Y. M., H. Y. and H.-H. S.. J.-F. J. designed the experiments with the help from L. F. and S.-B. Z.. H. L. and S. J. grew the WTe2 single crystals. W. X. performed the first-principle calculations with the help of S.-B. Z.. G.-Y. W., W. X., S.-B. Z. and J.-F. J. wrote the paper. All authors participated in the discussions.

Supplementary material

12274_2018_2255_MOESM1_ESM.pdf (2.6 mb)
Formation mechanism of twin domain boundary in 2D materials: The case for WTe2


  1. [1]
    Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.CrossRefGoogle Scholar
  2. [2]
    Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.CrossRefGoogle Scholar
  3. [3]
    Li, W. B.; Li, J. Ferroelasticity and domain physics in two-dimensional transition metal dichalcogenide monolayers. Nat. Commun. 2016, 7, 10843.CrossRefGoogle Scholar
  4. [4]
    Li, Y.; Duerloo, K. A. N.; Wauson, K.; Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 2016, 7, 10671.CrossRefGoogle Scholar
  5. [5]
    Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.CrossRefGoogle Scholar
  6. [6]
    Barja, S.; Wickenburg, S.; Liu, Z. F.; Zhang, Y.; Ryu, H.; Ugeda, M. M.; Hussain, Z.; Shen, Z. X.; Mo, S. K.; Wong, E. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 2016, 12, 751–756.CrossRefGoogle Scholar
  7. [7]
    Liu, H. J.; Jiao, L.; Yang, F.; Cai, Y.; Wu, X. X.; Ho, W.; Gao, C. L.; Jia, J. F.; Wang, N.; Fan, H. et al. Dense network of one-dimensional midgap metallic modes in monolayer MoSe2 and their spatial undulations. Phys. Rev. Lett. 2014, 113, 066105.CrossRefGoogle Scholar
  8. [8]
    Ugeda, M. M.; Pulkin, A.; Tang, S. J.; Ryu, H.; Wu, Q. S.; Zhang, Y.; Wong, D.; Pedramrazi, Z.; Martín-Recio, A.; Chen, Y. et al. Observation of topologically protected states at crystalline phase boundaries in single-layer WSe2. Nat. Commun. 2018, 9, 3401.CrossRefGoogle Scholar
  9. [9]
    Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2016, 16, 188–193.CrossRefGoogle Scholar
  10. [10]
    Kim, J. J.; Park, C.; Yamaguchi, W.; Shiino, O.; Kitazawa, K.; Hasegawa, T. Observation of a phase transition from the T phase to the H phase induced by a STM tip in 1T-TaS2. Phys. Rev. B 1997, 56, R15573.CrossRefGoogle Scholar
  11. [11]
    Qian, X. F.; Liu, J. W.; Fu, L.; Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 2014, 346, 1344–1347.CrossRefGoogle Scholar
  12. [12]
    Duerloo, K. A. N.; Li, Y.; Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 2014, 5, 4214.CrossRefGoogle Scholar
  13. [13]
    Mei, H. X.; Landis, C. M.; Huang, R. Concomitant wrinkling and buckledelamination of elastic thin films on compliant substrates. Mech. Mater. 2011, 43, 627–642.CrossRefGoogle Scholar
  14. [14]
    Quereda, J.; San-Jose, P.; Parente, V.; Vaquero-Garzon, L.; Molina-Mendoza, A. J.; Agrait, N.; Rubio-Bollinger, G.; Guinea, F.; Roldan, R.; Castellanos-Gomez, A. Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 2016, 16, 2931–2937.CrossRefGoogle Scholar
  15. [15]
    van Swygenhoven, H.; Derlet, P. M.; Frøseth, A. G. Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 2004, 3, 399–403.CrossRefGoogle Scholar
  16. [16]
    Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter. 2015, 27, 313201.CrossRefGoogle Scholar
  17. [17]
    Plechinger, G.; Castellanos-Gomez, A.; Buscema, M.; van der Zant, H. S. J.; Steele, G. A.; Kuc, A.; Heine, T.; Schüller, C.; Korn, T. Control of biaxial strain in single-layer molybdenite using local thermal expansion of the substrate. 2D Mater. 2015, 2, 015006.CrossRefGoogle Scholar
  18. [18]
    Wu, Y. F.; Chew, A. R.; Rojas, G. A.; Sini, G.; Haugstad, G.; Belianinov, A.; Kalinin, S. V.; Li, H.; Risko, C.; Brédas, J. L. et al. Strain effects on the work function of an organic semiconductor. Nat. Commun. 2016, 7, 10270.CrossRefGoogle Scholar
  19. [19]
    Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.CrossRefGoogle Scholar
  20. [20]
    Yang, S. X.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S. S.; Suslu, A.; Peeters, F. M.; Liu, Q.; Li, J. B. et al. Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 2015, 15, 1660–1666.CrossRefGoogle Scholar
  21. [21]
    Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.CrossRefGoogle Scholar
  22. [22]
    Kushima, A.; Qian, X. F.; Zhao, P.; Zhang, S. L.; Li, J. Ripplocations in van der Waals layers. Nano Lett. 2015, 15, 1302–1308.CrossRefGoogle Scholar
  23. [23]
    Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature 2014, 514, 205–208.CrossRefGoogle Scholar
  24. [24]
    Berry, J.; Zhou, S. S.; Han, J.; Srolovitz, D. J.; Haataja, M. P. Dynamic phase engineering of bendable transition metal dichalcogenide monolayers. Nano Lett. 2017, 17, 2473–2481.CrossRefGoogle Scholar
  25. [25]
    Luo, S. W.; Hao, G. L.; Fan, Y. P.; Kou, L. Z.; He, C. Y.; Qi, X.; Tang, C.; Li, J.; Huang, K.; Zhong, J. X. Formation of ripples in atomically thin MoS2 and local strain engineering of electrostatic properties. Nanotechnology 2015, 26, 105705.CrossRefGoogle Scholar
  26. [26]
    Hÿtch, M. J.; Snoeck, E.; Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 1998, 74, 131–146.CrossRefGoogle Scholar
  27. [27]
    Cullis, A. G.; Midgley, P. A. Microscopy of Semiconducting Materials 2007. Springer: Cambridge, UK, 2008; pp 199–202.CrossRefGoogle Scholar
  28. [28]
    Azizi, A.; Zou, X. L.; Ercius, P.; Zhang, Z. H.; Elías, A. L.; Perea-López, N.; Stone, G.; Terrones, M.; Yakobson, B. I.; Alem, N. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 2014, 5, 4867.CrossRefGoogle Scholar
  29. [29]
    Liu, Y.; Li, Y. Y.; Rajput, S.; Gilks, D.; Lari, L.; Galindo, P. L.; Weinert, M.; Lazarov, V. K.; Li, L. Tuning Dirac states by strain in the topological insulator Bi2Se3. Nat. Phys. 2014, 10, 294–299.CrossRefGoogle Scholar
  30. [30]
    Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 1968, 18, 773–786.CrossRefGoogle Scholar
  31. [31]
    Rice, J. R. Dislocation nucleation from a crack tip: An analysis based on the Peierls concept. J. Mech. Phys. Solids 1992, 40, 239–271.CrossRefGoogle Scholar
  32. [32]
    Tadmor, E. B.; Hai, S. A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 2003, 51, 765–793.CrossRefGoogle Scholar
  33. [33]
    Tang, S.; Mahanti, S. D.; Kalia, R. K. Ferroelastic phase transition in two-dimensional molecular solids. Phys. Rev. Lett. 1986, 56, 484.CrossRefGoogle Scholar
  34. [34]
    Ma, Y. J.; Diaz, H. C.; Avila, J.; Chen, C. Y.; Kalappattil, V.; Das, R.; Phan, M. H.; Čadež, T.; Carmelo, J. M. P.; Asensio, M. C. et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary. Nat. Commun. 2017, 8, 14231.CrossRefGoogle Scholar
  35. [35]
    van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.CrossRefGoogle Scholar
  36. [36]
    Tang, E.; Fu, L. Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators. Nat. Phys. 2014, 10, 964–969.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Guan-Yong Wang
    • 1
  • Weiyu Xie
    • 2
    • 3
  • Dan Xu
    • 1
  • Hai-Yang Ma
    • 1
  • Hao Yang
    • 1
  • Hong Lu
    • 4
  • Hao-Hua Sun
    • 1
  • Yao-Yi Li
    • 1
  • Shuang Jia
    • 4
  • Liang Fu
    • 5
  • Shengbai Zhang
    • 2
    Email author
  • Jin-Feng Jia
    • 1
    • 6
    Email author
  1. 1.Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and AstronomyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of Physics, Applied Physics, and AstronomyRensselaer Polytechnic InstituteTroyUSA
  3. 3.Institute of Chemical MaterialsChina Academy of Engineering Physics (CAEP)MianyangChina
  4. 4.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  5. 5.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA
  6. 6.Tsung-Dao Lee InstituteShanghaiChina

Personalised recommendations