Nano Research

, Volume 12, Issue 2, pp 429–436 | Cite as

Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization

  • Xiaolei Yuan
  • Xiaojing Jiang
  • Muhan CaoEmail author
  • Lei Chen
  • Kaiqi Nie
  • Yong Zhang
  • Yong Xu
  • Xuhui Sun
  • Yanguang LiEmail author
  • Qiao ZhangEmail author
Research Article


The development of Pt-based core/shell nanoparticles represents an emerging class of electrocatalysts for fuel cells, such as methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Here, we present a one-pot synthesis approach to prepare hexagonal PtBi/Pt core/shell nanostructure composed of an intermetallic Pt1Bi1 core and an ultrathin Pt shell with well-defined shape, size, and composition. The structure and the synergistic effect among different components enhanced their MOR and EOR performance. The optimized Pt2Bi nanoplates exhibit excellent mass activities in both MOR (4,820 mA·mgPt –1) and EOR (5,950 mA·mgPt–1) conducted in alkaline media, which are 6.15 times and 8.63 times higher than those of commercial Pt/C, respectively. Pt2Bi nanoplates also show superior operation durability to commercial Pt/C. This work may inspire the rational design and synthesis of Pt-based nanoparticles with improved performance for fuel cells and other applications.


intermetallics nanoplates core–shell structure methanol oxidation reaction ethanol oxidation reaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Ministry of Science and Technology of the People’s Republic of China (No. 2016YFE0129600), the National Natural Science Foundation of China (Nos. 21673150, 21611540336, and 21703146), and the Postdoctoral Science Foundation of China (No. 2016M591909). We acknowledge the financial support from the 111 Project, Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO–CIC), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and SWC for Synchrotron Radiation Research.

Supplementary material

12274_2018_2234_MOESM1_ESM.pdf (2.3 mb)
Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization


  1. [1]
    Mao, J. J.; Chen, W. X.; He, D. S.; Wan, J. W.; Pei, J. J.; Dong, J. C.; Wang, Y.; An, P. F.; Jin, Z.; Xing, W. et al. Design of ultrathin Pt-Mo-Ni nanowire catalysts for ethanol electrooxidation. Sci. Adv. 2017, 3, e1603068.CrossRefGoogle Scholar
  2. [2]
    Liu, X. W.; Wang, W. Y.; Li, H.; Li, L. S.; Zhou, G. B.; Yu, R.; Wang, D. S.; Li, Y. D. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.CrossRefGoogle Scholar
  3. [3]
    Kang, Y. J.; Pyo, J. B.; Ye, X. C.; Gordon, T. R.; Murray, C. B. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 2012, 6, 5642–5647.CrossRefGoogle Scholar
  4. [4]
    Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.CrossRefGoogle Scholar
  5. [5]
    Yang, N. L.; Zhang, Z. C.; Chen, B.; Huang, Y.; Chen, J. Z.; Lai, Z. C.; Chen, Y.; Sindoro, M.; Wang, A. L.; Cheng, H. F. et al. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Adv. Mater. 2017, 29, 1700769.CrossRefGoogle Scholar
  6. [6]
    Huang, X. Q.; Zhao, Z. P.; Chen, Y.; Zhu, E. B.; Li, M. F.; Duan, X. F.; Huang, Y. A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ. Sci. 2014, 7, 2957–2962.CrossRefGoogle Scholar
  7. [7]
    Chaudhari, N. K.; Joo, J.; Kwon, H.; Kim, B.; Kim, H. Y.; Joo, S. H.; Lee, K. Nanodendrites of platinum-group metals for electrocatalytic applications. Nano Res. 2018, 11, 6111–6140.CrossRefGoogle Scholar
  8. [8]
    Xie, S. F.; Choi, S.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.CrossRefGoogle Scholar
  9. [9]
    Wang, X.; Vara, M.; Luo, M.; Huang, H. W.; Ruditskiy, A.; Park, J.; Bao, S. X.; Liu, J. Y.; Howe, J.; Chi, M. F. et al. Pd@Pt core–shell concave decahedra: A class of catalysts for the oxygen reduction reaction with enhanced activity and durability. J. Am. Chem. Soc. 2015, 137, 15036–15042.CrossRefGoogle Scholar
  10. [10]
    Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.CrossRefGoogle Scholar
  11. [11]
    Eid, K.; Wang, H. J.; He, P.; Wang, K. M.; Ahamad, T.; Alshehri, S. M.; Yamauchi, Y.; Wang, L. One-step synthesis of porous bimetallic PtCu nanocrystals with high electrocatalytic activity for methanol oxidation reaction. Nanoscale 2015, 7, 16860–16866.CrossRefGoogle Scholar
  12. [12]
    Wu, F. X.; Zhang, D. T.; Peng, M. H.; Yu, Z. H.; Wang, X. Y.; Guo, G. S.; Sun, Y. G. Microfluidic synthesis enables dense and uniform loading of surfactant-free PtSn nanocrystals on carbon supports for enhanced ethanol oxidation. Angew. Chem., Int. Ed. 2016, 55, 4952–4956.CrossRefGoogle Scholar
  13. [13]
    Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.CrossRefGoogle Scholar
  14. [14]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  15. [15]
    Cui, C. H.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765–771.CrossRefGoogle Scholar
  16. [16]
    Park, K. W.; Sung, Y. E.; Han, S. J.; Yun, Y.; Hyeon, T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 939–944.CrossRefGoogle Scholar
  17. [17]
    Liu, Z. F.; Jackson, G. S.; Eichhorn, B. W. PtSn intermetallic, core–shell, and alloy nanoparticles as CO-tolerant electrocatalysts for H2 oxidation. Angew. Chem., Int. Ed. 2010, 49, 3173–3176.CrossRefGoogle Scholar
  18. [18]
    Lu, Y. Z.; Jiang, Y. Y.; Chen, W. PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2013, 2, 836–844.CrossRefGoogle Scholar
  19. [19]
    Feng, Q. C.; Zhao, S.; He, D. S.; Tian, S. B.; Gu, L.; Wen, X. D.; Chen, C.; Peng, Q; Wang, D. S.; Li, Y. D. Strain engineering to enhance the electrooxidation performance of atomic-layer Pt on intermetallic Pt3Ga. J. Am. Chem. Soc. 2018, 140, 2773–2776.CrossRefGoogle Scholar
  20. [20]
    Liu, L. F.; Pippel, E.; Scholz, R.; GÖsele, U. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett. 2009, 9, 4352–4358.CrossRefGoogle Scholar
  21. [21]
    Koh, S.; Leisch, J.; Toney, M. F.; Strasser, P. Structure-activity-stability relationships of Pt-Co alloy electrocatalysts in gas-diffusion electrode layers. J. Phys. Chem. C 2007, 111, 3744–3752.CrossRefGoogle Scholar
  22. [22]
    Cui, Z. N.; Chen, H.; Zhao, M. T.; Marshall, D.; Yu, Y. C.; Abruña, H.; DiSalvo, F. J. Synthesis of structurally ordered Pt3Ti and Pt3V nanoparticles as methanol oxidation catalysts. J. Am. Chem. Soc. 2014, 136, 10206–10209.CrossRefGoogle Scholar
  23. [23]
    Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. N-doped carbon-stabilized PtCo nanoparticles derived from Pt@ZIF-67: Highly active and durable catalysts for oxygen reduction reaction. Nano Res. 2017, 10, 3228–3237.CrossRefGoogle Scholar
  24. [24]
    Gu, J.; Lan, G. X.; Jiang, Y. Y.; Xu, Y. S.; Zhu, W.; Jin, C. H.; Zhang, Y. W. Shaped Pt-Ni nanocrystals with an ultrathin Pt-enriched shell derived from one-pot hydrothermal synthesis as active electrocatalysts for oxygen reduction. Nano Res. 2015, 8, 1480–1496.CrossRefGoogle Scholar
  25. [25]
    Zhang, N.; Zhu, Y. M.; Shao, Q.; Zhu, X.; Huang, X. Q. Ternary PtNi/ PtxPb/Pt core/multishell nanowires as efficient and stable electrocatalysts for fuel cell reactions. J. Mater. Chem. A 2017, 5, 18977–18983.CrossRefGoogle Scholar
  26. [26]
    Wang, H.; Xu, C. W.; Cheng, F. L.; Zhang, M.; Wang, S. Y.; Jiang, S. P. Pd/Pt core–shell nanowire arrays as highly effective electrocatalysts for methanol electrooxidation in direct methanol fuel cells. Electrochem. Commun. 2008, 10, 1575–1578.CrossRefGoogle Scholar
  27. [27]
    Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R. Core-protected platinum monolayer shell highstability electrocatalysts for fuel-cell cathodes. Angew. Chem., Int. Ed. 2010, 49, 8602–8607.CrossRefGoogle Scholar
  28. [28]
    Guo, S. J.; Fang, Y. X.; Dong, S. J.; Wang, E. K. High-efficiency and lowcost hybrid nanomaterial as enhancing electrocatalyst: Spongelike Au/Pt core/shell nanomaterial with hollow cavity. J. Phys. Chem. C 2007, 111, 17104–17109.CrossRefGoogle Scholar
  29. [29]
    Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Ru-Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 2008, 7, 333–338.CrossRefGoogle Scholar
  30. [30]
    van der Vliet, D. F.; Wang, C.; Li, D. G.; Paulikas, A. P.; Greeley, J.; Rankin, R. B.; Strmcnik, D.; Tripkovic, D.; Markovic, N. M.; Stamenkovic, V. R. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem., Int. Ed. 2012, 51, 3139–3142.CrossRefGoogle Scholar
  31. [31]
    Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.CrossRefGoogle Scholar
  32. [32]
    Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J. B.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.CrossRefGoogle Scholar
  33. [33]
    Wang, D.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinumcobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.CrossRefGoogle Scholar
  34. [34]
    Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J.-Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.CrossRefGoogle Scholar
  35. [35]
    Zhang, D. T.; Wu, F. X.; Peng, M. H.; Wang, X. Y.; Xia, D. G.; Guo, G. S. One-step, facile and ultrafast synthesis of phase-and size-controlled Pt-Bi intermetallic nanocatalysts through continuous-flow microfluidics. J. Am. Chem. Soc. 2015, 137, 6263–6269.CrossRefGoogle Scholar
  36. [36]
    Shen, Y. Y.; Sun, Y.; Zhou, L. N.; Li, Y. J.; Yeung, E. S. Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J. Mater. Chem. A 2014, 2, 2977–2984.CrossRefGoogle Scholar
  37. [37]
    Du, W. X.; Su, D.; Wang, Q.; Frenkel, A. I.; Teng, X. W. Promotional effects of bismuth on the formation of platinum-bismuth nanowires network and the electrocatalytic activity toward ethanol oxidation. Cryst. Growth Des. 2011, 11, 594–599.CrossRefGoogle Scholar
  38. [38]
    Simões, M.; Baranton, S.; Coutanceau, C. Influence of bismuth on the structure and activity of Pt and Pd nanocatalysts for the direct electrooxidation of NaBH4. Electrochim. Acta 2010, 56, 580–591.CrossRefGoogle Scholar
  39. [39]
    Simões, M.; Baranton, S.; Coutanceau, C. Enhancement of catalytic properties for glycerol electrooxidation on Pt and Pd nanoparticles induced by Bi surface modification. Appl. Catal. B 2011, 110, 40–49.CrossRefGoogle Scholar
  40. [40]
    Li, H. H.; Cui, C. H.; Zhao, S.; Yao, H. B.; Gao, M. R.; Fan, F. J.; Yu, S. H. Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts. Adv. Energy Mater. 2012, 2, 1182–1187.CrossRefGoogle Scholar
  41. [41]
    Huang, W. J.; Wang, H. T.; Zhou, J. G.; Wang, J.; Duchesne, P. N.; Muir, D.; Zhang, P.; Han, N.; Zhao, F. P.; Zeng, M. et al. Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinumnickel hydroxide-grapheme. Nat. Commun. 2015, 6, 10035.CrossRefGoogle Scholar
  42. [42]
    Zhang, Z. C.; Luo, Z. M.; Chen, B.; Wei, C.; Zhao, J.; Chen, J. Z.; Zhang, X.; Lai, Z. C.; Fan, Z. X.; Tan, C. L. et al. One-pot synthesis of highly anisotropic five-fold-twinned PtCu nanoframes used as a bifunctional electrocatalyst for oxygen reduction and methanol oxidation. Adv. Mater. 2016, 28, 8712–8717.CrossRefGoogle Scholar
  43. [43]
    Serrà, A.; Gómez, E.; Golosovsky, I. V.; Nogués, J.; Vallés, E. Effective ionic-liquid microemulsion based electrodeposition of mesoporous Co-Pt films for methanol oxidation catalysis in alkaline media. J. Mater. Chem. A 2016, 4, 7805–7814.CrossRefGoogle Scholar
  44. [44]
    Ye, L. T.; Li, Z. S.; Zhang, X. F.; Lei, F. L.; Lin, S. One-step microwave synthesis of Pt (Pd)/Cu2O/GNs composites and their electro-photosynergistic catalytic properties for methanol oxidation. J. Mater. Chem. A 2014, 2, 21010–21019.CrossRefGoogle Scholar
  45. [45]
    Zhang, G. L.; Yang, Z. Z.; Zhang, W.; Hu, H. W.; Wang, C. Z.; Huang, C. D.; Wang, Y. X. Tailoring the morphology of Pt3Cu1 nanocrystals supported on graphene nanoplates for ethanol oxidation. Nanoscale 2016, 8, 3075–3084.CrossRefGoogle Scholar
  46. [46]
    Feng, J. J.; He, L. L.; Fang, R.; Wang, Q. L.; Yuan, J. H.; Wang, A. J. Bimetallic PtAu superlattice arrays: Highly electroactive and durable catalyst for oxygen reduction and methanol oxidation reactions. J. Power Sources 2016, 330, 140–148.CrossRefGoogle Scholar
  47. [47]
    Wang, Z. H.; Xie, W. F.; Zhang, F. F.; Xia, J. F.; Gong, S. D.; Xia, Y. Z. Facile synthesis of PtPdPt nanocatalysts for methanol oxidation in alkaline solution. Electrochim. Acta 2016, 192, 400–406.CrossRefGoogle Scholar
  48. [48]
    Wang, M.; Ma, Z. Z.; Li, R. X.; Tang, B.; Bao, X. Q.; Zhang, Z. H.; Wang, X. G. Novel flower-like PdAu(Cu) anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation. Electrochim. Acta 2017, 227, 330–334.CrossRefGoogle Scholar
  49. [49]
    Wang, Y. R.; He, Q. L.; Guo, J.; Wei, H. G.; Ding, K. Q.; Lin, H. F.; Bhana, S.; Huang, X. H.; Luo, Z. P.; Shen, T. D. et al. Carboxyl multiwalled carbon-nanotube-stabilized palladium nanocatalysts toward improved methanol oxidation reaction. ChemElectroChem 2015, 2, 559–570.CrossRefGoogle Scholar
  50. [50]
    Huang, W. J.; Ma, X.-Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.CrossRefGoogle Scholar
  51. [51]
    Zhu, C. Z.; Shi, Q. R.; Fu, S. F.; Song, J. H.; Xia, H. B.; Du, D.; Lin, Y. H. Efficient synthesis of MCu (M = Pd, Pt, and Au) aerogels with accelerated gelation kinetics and their high electrocatalytic activity. Adv. Mater. 2016, 28, 8779–8783.CrossRefGoogle Scholar
  52. [52]
    Jiang, K. Z.; Wang, P. T.; Guo, S. J.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Q. Ordered PdCu-based nanoparticles as bifunctional oxygenreduction and ethanol-oxidation electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9030–9035.CrossRefGoogle Scholar
  53. [53]
    Wang, A. L.; He, X. J.; Lu, X. F.; Xu, H.; Tong, Y. X.; Li, G. R. Palladiumcobalt nanotube arrays supported on carbon fiber cloth as high-performance flexible electrocatalysts for ethanol oxidation. Angew. Chem., Int. Ed. 2015, 54, 3669–3673.CrossRefGoogle Scholar
  54. [54]
    Hong, J. W.; Kim, Y.; Wi, D. H.; Lee, S.; Lee, S. U.; Lee, Y. W.; Choi, S. I.; Han, S. W. Ultrathin free-standing ternary-alloy nanosheets. Angew. Chem., Int. Ed. 2016, 55, 2753–2758.CrossRefGoogle Scholar
  55. [55]
    Dutta, A.; Ouyang, J. Y. Ternary NiAuPt nanoparticles on reduced graphene oxide as catalysts toward the electrochemical oxidation reaction of ethanol. ACS Catal. 2015, 5, 1371–1380.CrossRefGoogle Scholar
  56. [56]
    Pech-Rodríguez, W. J.; González-Quijano, D.; Vargas-Gutiérrez, G.; Morais, C.; Napporn, T. W.; Rodríguez-Varela, F. J. Electrochemical and in situ FTIR study of the ethanol oxidation reaction on PtMo/C nanomaterials in alkaline media. Appl. Catal. B 2017, 203, 654–662.CrossRefGoogle Scholar
  57. [57]
    Liu, Q.; Fan, J. C.; Min, Y. L.; Wu, T.; Lin, Y.; Xu, Q. J. B, N-codoped graphene nanoribbons supported Pd nanoparticles for ethanol electrooxidation enhancement. J. Mater. Chem. A 2016, 4, 4929–4933.CrossRefGoogle Scholar
  58. [58]
    Liu, H. M.; Li, J. H.; Wang, L. J.; Tang, Y. W.; Xia, B. Y.; Chen, Y. Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Res. 2017, 10, 3324–3332.CrossRefGoogle Scholar
  59. [59]
    Zhang, Z. Y.; Liu, S. S.; Tian, X.; Wang, J.; Xu, P.; Xiao, F.; Wang, S. Facile synthesis of N-doped porous carbon encapsulated bimetallic PdCo as a highly active and durable electrocatalyst for oxygen reduction and ethanol oxidation. J. Mater. Chem. A 2017, 5, 10876–10884.CrossRefGoogle Scholar
  60. [60]
    Huang, D. B.; Yuan, Q.; He, P. L.; Wang, K.; Wang, X. A facile and general strategy for the synthesis of porous flowerlike Pt-based nanocrystals as effective electrocatalysts for alcohol oxidation. Nanoscale 2016, 8, 14705–14710.CrossRefGoogle Scholar
  61. [61]
    Yang, Z. Z.; Wang, X. L.; Kang, X.; Zhang, S. Q.; Guo, Y. L. The PtPdAg/C electrocatalyst with Pt-rich surfaces via electrochemical dealloying of Ag and Pd for ethanol oxidation. Electrochim. Acta 2017, 236, 72–81.CrossRefGoogle Scholar
  62. [62]
    Zhang, G. L.; Liu, Z. Y.; Xiao, Z. L.; Huang, J. L.; Li, Q. B.; Wang, Y. X.; Sun, D. H. Ni2P-graphite nanoplatelets supported Au-Pd core–shell nanoparticles with superior electrochemical properties. J. Phys. Chem. C 2015, 119, 10469–10477.CrossRefGoogle Scholar
  63. [63]
    Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y. E.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem., Int. Ed. 2018, 130, 3493–3496.CrossRefGoogle Scholar
  64. [64]
    Chen, L.; Lu, L. L.; Zhu, H. L.; Chen, Y. G.; Huang, Y.; Li, Y. D.; Wang, L. Y. Improved ethanol electrooxidation performance by shortening Pd-Ni active site distance in Pd-Ni-P nanocatalysts. Nat. Commun. 2017, 8, 14136.CrossRefGoogle Scholar
  65. [65]
    Zhang, B. W.; He, C. L.; Jiang, Y. X.; Chen, M. H.; Li, Y. Y.; Rao, L.; Sun, S. G. High activity of PtBi intermetallics supported on mesoporous carbon towards HCOOH electro-oxidation. Electrochem. Commun. 2012, 25, 105–108.CrossRefGoogle Scholar
  66. [66]
    Zheng, Y. R.; Gao, M. R.; Li, H. H.; Gao, Q.; Arshad, M. N.; Albar, H. A.; Sobahi, T. R.; Yu, S.-H. Carbon-supported PtCo2Ni2 alloy with enhanced activity and stability for oxygen reduction. Sci. China Mater. 2015, 58, 179–185.CrossRefGoogle Scholar
  67. [67]
    Tripković, A. V.; Popović, K. D.; Stevanović, R. M.; Socha, R.; Kowal, A. Activity of a PtBi alloy in the electrochemical oxidation of formic acid. Electrochem. Commun. 2006, 8, 1492–1498.CrossRefGoogle Scholar
  68. [68]
    Ho, V. T. T.; Pan, C.-J.; Rick, J.; Su, W.-N.; Hwang, B.-J. Nanostructured Ti0.7Mo0.3O2 support enhances electron transfer to Pt: High-performance catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2011, 133, 11716–11724.CrossRefGoogle Scholar
  69. [69]
    Wang, S. Y.; Yang, F.; Jiang, S. P.; Chen, S. L.; Wang, X. Tuning the electrocatalytic activity of Pt nanoparticles on carbon nanotubes via surface functionalization. Electrochem. Commun. 2010, 12, 1646–1649.CrossRefGoogle Scholar
  70. [70]
    Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, SWC for Synchrotron Radiation ResearchSoochow UniversitySuzhouChina

Personalised recommendations