Advertisement

Nano Research

, Volume 12, Issue 2, pp 421–428 | Cite as

Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection

  • Qin Wang
  • Yan Li
  • Xiaoyan Chen
  • Hao Jiang
  • Zhirong Zhang
  • Xun SunEmail author
Research Article
  • 30 Downloads

Abstract

Current therapeutic limitations existed in effective treatment of rheumatoid arthritis (RA) have motivated numerous researches on finding new strategies. Regarding to the non-targeted distribution and uncontrollable in vivo performance which hinder the effective treatment for RA, we designed an acid-responsive polymeric micelle formulation by attaching the dexamethasone (Dex) to the side chains of a wheat-like polyethylene glycol (PEG) derivate via a hydrazone linker. The self-assembly micelles with the diameter around 50 nm could passively migrate to inflamed sites. The presence of hydrazone linkers avoided the drug leakage in circulation and ensured the preferential release in acidic arthritic joints. Here, we evaluated how the polymer-drug micelles with different density of drug payloads influenced the release pattern, pharmacokinetics and biodistribution, as well as the most importantly, the duration of the therapeutic efficacy. Our exploration would offer the chemical and structural basis for designing and optimizing the nanocarriers for enhanced therapeutic efficacy.

Keywords

rheumatoid arthritis pH-responsive micelles dexamethasone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (No. 81673362).

Supplementary material

12274_2018_2233_MOESM1_ESM.pdf (1.6 mb)
Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection

References

  1. [1]
    Smolen, J. S.; Steiner, G. Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2003, 2, 473–488.CrossRefGoogle Scholar
  2. [2]
    van Vollenhoven, R. F. Treatment of rheumatoid arthritis: State of the art 2009. Nat. Rev. Rheumatol. 2009, 5, 531–541.CrossRefGoogle Scholar
  3. [3]
    Yuan, F.; Quan, L. D.; Cui, L.; Goldring, S. R.; Wang, D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012, 64, 1205–1219.CrossRefGoogle Scholar
  4. [4]
    Wang, Q.; Sun, X. Recent advances in nanomedicines for the treatment of Rheumatoid arthritis. Biomater. Sci. 2017, 5, 1407–1420.CrossRefGoogle Scholar
  5. [5]
    Dolati, S.; Sadreddini, S.; Rostamzadeh, D.; Ahmadi, M.; Jadidi-Niaragh, F.; Yousefi, M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed. Pharmacother. 2016, 80, 30–41.CrossRefGoogle Scholar
  6. [6]
    Tarner, I. H.; Müller-Ladner, U. Drug delivery systems for the treatment of rheumatoid arthritis. Expert Opin. Drug Deliv. 2008, 5, 1027–1037.CrossRefGoogle Scholar
  7. [7]
    Prasad, L. K.; O'Mary, H.; Cui, Z. R. Nanomedicine delivers promising treatments for rheumatoid arthritis. Nanomedicine 2015, 10, 2063–2074.CrossRefGoogle Scholar
  8. [8]
    Koenders, M. I.; van den Berg, W. B. Novel therapeutic targets in rheumatoid arthritis. Trends. Pharmacol. Sci. 2015, 36, 189–195.CrossRefGoogle Scholar
  9. [9]
    Buch, M. H.; Bingham, S. J.; Bryer, D.; Emery, P. Long-term infliximab treatment in rheumatoid arthritis: Subsequent outcome of initial responders. Rheumatology (Oxford) 2007, 46, 1153–1156.CrossRefGoogle Scholar
  10. [10]
    Chaudhari, K.; Rizvi, S.; Syed, B. A. Rheumatoid arthritis: Current and future trends. Nat. Rev. Drug Discov. 2016, 15, 305–306.CrossRefGoogle Scholar
  11. [11]
    Yang, M. D.; Feng, X. R.; Ding, J. X.; Chang, F.; Chen, X. S. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 2017, 252, 108–124.CrossRefGoogle Scholar
  12. [12]
    Ferrari, M.; Onuoha, S. C.; Pitzalis, C. Trojan horses and guided missiles: Targeted therapies in the war on arthritis. Nat. Rev. Rheumatol. 2015, 11, 328–337.CrossRefGoogle Scholar
  13. [13]
    Wang, D.; Goldring, S. R. The bone, the joints and the balm of Gilead. Mol. Pharm. 2011, 8, 991–993.CrossRefGoogle Scholar
  14. [14]
    Wang, Q.; Jiang, J. Y.; Chen, W. F.; Jiang, H.; Zhang, Z. R.; Sun, X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J. Control. Release 2016, 230, 64–72.CrossRefGoogle Scholar
  15. [15]
    Quan, L. D.; Zhang, Y. J.; Crielaard, B. J.; Dusad, A.; Lele, S. M.; Rijcken, C. J. F.; Metselaar, J. M.; Kostková, H.; Etrych, T.; Ulbrich, K. et al. Nanomedicines for inflammatory arthritis: Head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano 2013, 8, 458–466.CrossRefGoogle Scholar
  16. [16]
    Kim, S.; Shi, Y. Z.; Kim, J. Y.; Park, K.; Cheng, J. X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin. Drug Deliv. 2010, 7, 49–62.CrossRefGoogle Scholar
  17. [17]
    Wang, D.; Miller, S. C.; Liu, X. M.; Anderson, B.; Wang, X. S.; Goldring, S. R. Novel dexamethasone-HPMA copolymer conjugate and its potential application in treatment of rheumatoid arthritis. Arthritis Res. Ther. 2007, 9, R2.CrossRefGoogle Scholar
  18. [18]
    Liu, X. M.; Quan, L. D.; Tian, J.; Alnouti, Y.; Fu, K.; Thiele, G. M.; Wang, D. Synthesis and evaluation of a well-defined HPMA copolymerdexamethasone conjugate for effective treatment of rheumatoid arthritis. Pharm. Res. 2008, 25, 2910–2919.CrossRefGoogle Scholar
  19. [19]
    Hrubý, M.; Konák, C.; Ulbrich, K. Polymeric micellar pH-sensitive drug delivery system for doxorubicin. J Control. Release 2005, 103, 137–148.CrossRefGoogle Scholar
  20. [20]
    Li, C. H.; Li, H. M.; Wang, Q.; Zhou, M. L.; Li, M.; Gong, T.; Zhang, Z. R.; Sun, X. pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Control. Release 2017, 246, 133–141.CrossRefGoogle Scholar
  21. [21]
    Quan, L. D.; Yuan, F.; Liu, X. M.; Huang, J. G.; Alnouti, Y.; Wang, D. Pharmacokinetic and biodistribution studies of N-(2-Hydroxypropyl)methacrylamide copolymer-dexamethasone conjugates in adjuvant-induced arthritis rat model. Mol. Pharm. 2010, 7, 1041–1049.CrossRefGoogle Scholar
  22. [22]
    Hegen, M.; Keith, J. C. Jr.; Collins, M.; Nickerson-Nutter, C. L. Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann. Rheum. Dis. 2008, 67, 1505–1515.CrossRefGoogle Scholar
  23. [23]
    Dell’Antonio, G.; Quattrini, A.; Dal Cin, E.; Fulgenzi, A.; Ferrero, M. E. Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci. Lett. 2002, 327, 87–90.CrossRefGoogle Scholar
  24. [24]
    Crielaard, B. J.; Rijcken, C. J. F.; Quan, L. D.; van der Wal, S.; Altintas, I.; van der Pot, M.; Kruijtzer, J. A. W.; Liskamp, R. M. J.; Schiffelers, R. M.; van Nostrum, C. F. et al. Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angew. Chem., Int. Ed. 2012, 51, 7254–7258.CrossRefGoogle Scholar
  25. [25]
    Metselaar, J. M.; van den Berg, W. B.; Holthuysen, A. E. M.; Wauben, M. H. M.; Storm, G.; van Lent, P. L. E. M. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis. 2004, 63, 348–353.CrossRefGoogle Scholar
  26. [26]
    Gasparyan, A. Y.; Stavropoulos-Kalinoglou, A.; Mikhailidis, D. P.; Douglas, K. M. J.; Kitas, G. D. Platelet function in rheumatoid arthritis: Arthritic and cardiovascular implications. Rheumatol. Int. 2011, 31, 153–164.CrossRefGoogle Scholar
  27. [27]
    Knijff-Dutmer, E. A. J.; Koerts, J.; Nieuwland, R.; Kalsbeek-Batenburg, E. M.; van de Laar, M. A. F. J. Elevated levels of platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum. 2002, 46, 1498–1503.CrossRefGoogle Scholar
  28. [28]
    Jeyachandran, Y. L.; Mielczarski, E.; Rai, B.; Mielczarski, J. A. Quantitative and qualitative evaluation of adsorption/desorption of bovine serum albumin on hydrophilic and hydrophobic surfaces. Langmuir. 2009, 25, 11614–11620.CrossRefGoogle Scholar
  29. [29]
    Metselaar, J. M.; Wauben, M. H. M.; Wagenaar-Hilbers, J. P. A.; Boerman, O. C.; Storm, G. Complete remission of experimental arthritis by joint targeting of glucocorticoids with long-circulating liposomes. Arthritis Rheum. 2003, 48, 2059–2066.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Qin Wang
    • 1
  • Yan Li
    • 1
  • Xiaoyan Chen
    • 1
  • Hao Jiang
    • 1
  • Zhirong Zhang
    • 1
  • Xun Sun
    • 1
    Email author
  1. 1.Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of PharmacySichuan UniversityChengduChina

Personalised recommendations