Nano Research

, Volume 12, Issue 2, pp 405–412 | Cite as

Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots

  • Taeho Noh
  • Heung Seob Shin
  • Changwon Seo
  • Jun Young Kim
  • Jongwon Youn
  • Jeongyong Kim
  • Kwang-Sup LeeEmail author
  • Jinsoo JooEmail author
Research Article


Inorganic perovskite CsPbBr3 quantum dots (QDs) are potential nanoscale photosensitizers; moreover, two-dimensional (2-D) molybdenum disulfide (MoS2) has been intensively studied for application in the active layers of optoelectronic devices. In this study, heterostructures of 2D-monolayered MoS2 with zero-dimensional functionalized CsPbBr3 QDs were prepared, and their nanoscale optical characteristics were investigated. The effect of n-type doping on the MoS2 monolayer after hybridization with perovskite CsPbBr3 QDs was observed using laser confocal microscope photoluminescence (PL) and Raman spectra. Field-effect transistors (FETs) using MoS2 and the MoS2–CsPbBr3 QDs hybrid were also fabricated, and their electrical and photoresponsive characteristics were investigated in terms of the charge transfer effect. For the MoS2–CsPbBr3 QDs-based FETs, the field effect mobility and photoresponsivity upon light irradiation were enhanced by ~ 4 times and a dramatic ~ 17 times, respectively, compared to the FET prepared without the perovskite QDs and without light irradiation. It is noteworthy that the photoresponsivity of the MoS2–CsPbBr3 QDs-based FETs significantly increased with increasing light power, which is completely contrary to the behavior observed in previous studies of MoS2-based FETs. The increased mobility and significant enhancement of the photoresponsivity can be attributed to the n-type doping effect and efficient energy transfer from CsPbBr3 QDs to MoS2. The results indicate that the optoelectronic characteristics of MoS2-based FETs can be significantly improved through hybridization with photosensitive perovskite CsPbBr3 QDs.


MoS2 perovskite quantum dot transistor photoresponsivity mobility charge transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This study was supported by the National Research Foundation (NRF) of Korea funded by the Korean government (No. NRF- 2018R1A2B2006369). One of the authors, K. S. L., also acknowledges the financial support by the Mid-Career Researcher Program through the NRF funded by MEST (No. 2016R1A2B4008473).

Supplementary material

12274_2018_2230_MOESM1_ESM.pdf (1.4 mb)
Significant enhancement of photoresponsive characteristics and mobility of MoS2-based transistors through hybridization with perovskite CsPbBr3 quantum dots


  1. [1]
    Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, I. I.; Blake, P.; Booth, T. J.; Jiang, D. et al. Electronic properties of graphene. Phys. Status Solidi B 2007, 244, 4106–4111.Google Scholar
  2. [2]
    Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev. 2015, 44, 8859–8876.Google Scholar
  3. [3]
    Tong, X.; Ashalley, E.; Lin, F.; Li, H. D.; Wang, Z. M. Advances in MoS2- based field effect transistors (FETs). Nano-Micro Lett. 2015, 7, 203–218.Google Scholar
  4. [4]
    Dhakal, K. P.; Duong, D. L.; Lee, J.; Nam, H.; Kim, M.; Kan, M.; Lee, Y. H.; Kim, J. Confocal absorption spectral imaging of MoS2: Optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 2014, 6, 13028–13035.Google Scholar
  5. [5]
    Lui, C. H.; Ye, Z. P.; Ji, C.; Chiu, K. C.; Chou, C. T.; Andersen, T. I.; Means-Shively, C.; Anderson, H.; Wu, J. M.; Kidd, T. et al. Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 2015, 91, 165403.Google Scholar
  6. [6]
    Mak, K. F.; He, K. L.; Lee, C.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.Google Scholar
  7. [7]
    Wei, W.; Dai, Y.; Sun, Q. L.; Yin, N.; Han, S. H.; Huang, B. B.; Jacob, T. Electronic structures of in-plane two-dimensional transition-metal dichalcogenide heterostructures. Phys. Chem. Chem. Phys. 2015, 17, 29380–29386.Google Scholar
  8. [8]
    Paul, A. K.; Kuiri, M.; Saha, D.; Chakraborty, B.; Mahapatra, S.; Sood, A. K.; Das, A. Photo-tunable transfer characteristics in MoTe2–MoS2 vertical heterostructure. npj 2D Mater. Appl. 2017, 1, 17.Google Scholar
  9. [9]
    Fivaz R.; Mooser, E. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 1967, 163, 743.Google Scholar
  10. [10]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.Google Scholar
  11. [11]
    Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, I. V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147.Google Scholar
  12. [12]
    Liu, H.; Peide, D. Y. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Elec. Dev. Lett. 2012, 33, 546–548.Google Scholar
  13. [13]
    Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.Google Scholar
  14. [14]
    Polavarapu, L.; Nickel, B.; Feldmann, J.; Urban, A. S. Advances in quantumconfined perovskite nanocrystals for optoelectronics. Adv. Energy Mater. 2017, 7, 1700267.Google Scholar
  15. [15]
    Huang, C. Y.; Zou, C.; Mao, C. Y.; Corp, K. L.; Yao, Y. C.; Lee, Y. J.; Schlenker, C. W.; Jen, A. K. Y.; Lin, L. Y. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics 2017, 4, 2281–2289.Google Scholar
  16. [16]
    Ha, S. T.; Su, R.; Xing, J.; Zhang, Q.; Xiong, Q. H. Metal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 2017, 8, 2522–2536.Google Scholar
  17. [17]
    Du, X. F.; Wu, G.; Cheng, J.; Dang, H.; Ma, K. Z.; Zhang, Y. W.; Tan, P. F.; Chen, S. High-quality CsPbBr3 perovskite nanocrystals for quantum dot light-emitting diodes. RSC Adv. 2017, 7, 10391–10396.Google Scholar
  18. [18]
    Li, H.; Zheng, X.; Liu, Y.; Zhang, Z. P; Jiang, T. Ultrafast interfacial energy transfer and interlayer excitons in the monolayer WS2/CsPbBr3 quantum dot heterostructure. Nanoscale 2018, 10, 1650–1659.Google Scholar
  19. [19]
    Liu, Y.; Li, H.; Zheng, X.; Cheng, X. G.; Jiang, T. Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt. Mater. Express 2017, 7, 1327–1334.Google Scholar
  20. [20]
    Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.Google Scholar
  21. [21]
    Kang, D. H.; Pae, S. R.; Shim, J.; Yoo, G.; Jeon, J.; Leem, J. W.; Yu, J. S.; Lee, S.; Shin, B.; Park, J. H. An ultrahigh-performance photodetector based on a perovskite–transition-metal-dichalcogenide hybrid structure. Adv. Mater. 2016, 28, 7799–7806.Google Scholar
  22. [22]
    Song, X. F.; Liu, X. H.; Yu, D. J.; Huo, C. X.; Ji, J. P.; Li, X. M.; Zhang, S. L.; Zou, Y. S.; Zhu, G. Y.; Wang, Y. J. et al. Boosting two-dimensional MoS2/CsPbBr3 photodetectors via enhanced light absorbance and interfacial carrier separation. ACS Appl. Mater. Interfaces 2018, 10, 2801–2809.Google Scholar
  23. [23]
    Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.Google Scholar
  24. [24]
    Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.Google Scholar
  25. [25]
    Guria, A. K.; Dutta, S. K.; Adhikari, S. D.; Pradhan, N. Doping Mn2+ in lead halide perovskite nanocrystals: Successes and challenges. ACS Energy Lett. 2017, 2, 1014–1021.Google Scholar
  26. [26]
    Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.Google Scholar
  27. [27]
    Liu, K.; Yan, Q. M.; Chen, M.; Fan, W.; Sun, Y. H.; Suh, J.; Fu, D. Y.; Lee, S.; Zhou, J.; Tongay, S. et al. Elastic properties of chemical-vapordeposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014, 14, 5097–5103.Google Scholar
  28. [28]
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.Google Scholar
  29. [29]
    Ryu, M. Y.; Jang, H. K.; Lee, K. J.; Piao, M. X.; Ko, S. P.; Shin, M.; Huh, J.; Kim, G. T. Triethanolamine doped multilayer MoS2 field effect transistors. Phys. Chem. Chem. Phys. 2017, 19, 13133–13139.Google Scholar
  30. [30]
    Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.Google Scholar
  31. [31]
    Andleeb, S.; Singh, A. K.; Eom, J. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater. 2015, 16, 035009.Google Scholar
  32. [32]
    Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large–size crystalline MoS2 and resist-free transfer assisted with a Cu thin film. Sci. Rep. 2015, 5, 18596.Google Scholar
  33. [33]
    Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence quenching in gold-MoS2 hybrid nanoflakes. Sci. Rep. 2014, 4, 5575.Google Scholar
  34. [34]
    Cho, E. H.; Song, W. G.; Park, C. J.; Kim, J.; Kim, S.; Joo, J. Enhancement of photoresponsive electrical characteristics of multilayer MoS2 transistors using rubrene patches. Nano Res. 2015, 8, 790–800.Google Scholar
  35. [35]
    Yi, Y.; Wu, C. M.; Liu, H. C.; Zeng, J. L.; He, H. T.; Wang, J. N. A study of lateral Schottky contacts in WSe2 and MoS2 field effect transistors using scanning photocurrent microscopy. Nanoscale 2015, 7, 15711–15718.Google Scholar
  36. [36]
    Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.Google Scholar
  37. [37]
    Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Taeho Noh
    • 1
  • Heung Seob Shin
    • 2
  • Changwon Seo
    • 3
  • Jun Young Kim
    • 1
  • Jongwon Youn
    • 1
  • Jeongyong Kim
    • 3
  • Kwang-Sup Lee
    • 2
    Email author
  • Jinsoo Joo
    • 1
    Email author
  1. 1.Department of PhysicsKorea UniversitySeoulRepublic of Korea
  2. 2.Department of Advanced Materials and Chemical EngineeringHannam UniversityDaejeonRepublic of Korea
  3. 3.Department of Energy ScienceSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations