Nano Research

, Volume 12, Issue 2, pp 397–404 | Cite as

Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries

  • Hyeongwoo Kim
  • Hyojun Lim
  • Hyung-Seok Kim
  • Ki Jae Kim
  • Dongjin Byun
  • Wonchang ChoiEmail author
Research Article


Na superionic conductor (NASICON)-type Na3V2(PO4)3 (NVP) has been regarded as a promising cathode material for sodium-ion batteries (SIBs). However, NVP suffers from poor cyclability and rate capability because of its intrinsically low electronic conductivity. Herein, we successfully synthesized N-doped carbon-wrapped Na3V2(PO4)3 (NC@NVP) through the carbonization of polydopamine, which is rich in nitrogen species. The strong adhesion properties of the polydopamine lead to effective and homogeneous wrapping of NVP particles, and it is further turned into a conductive N-doped carbon network itself, providing facile diffusion of electrons and Na+ ions during battery operation. NC@NVP displays remarkable electrochemical performance, even under harsh operating conditions, such as a high rate capability (discharge capacity of 70.88, 49.21 mA·h·g−1 at 50 and 100 C), long-term cycling stability (capacity retention of 94.77% over 1,000 cycles at 20 C), and high-temperature cycling (capacity retention of 92.0% after 500 cycles at 60 °C).


polydopamine N-doped carbon Na3V2(PO4)3 cathode sodium-ion batteries 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Basic Science Research Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT and Future Planning (No. 2018R1A2B2007081). The authors declare no competing financial interest.

Supplementary material

12274_2018_2229_MOESM1_ESM.pdf (2.1 mb)
Polydopamine-derived N-doped carbon-wrapped Na3V2(PO4)3 cathode with superior rate capability and cycling stability for sodium-ion batteries


  1. [1]
    Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium–ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.CrossRefGoogle Scholar
  2. [2]
    Nithya, C.; Gopukumar, S. Sodium ion batteries: A newer electrochemical storage. Wiley Interdisciplinary Rev. Energy Environ. 2015, 4, 253–278.CrossRefGoogle Scholar
  3. [3]
    Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium–ion batteries: Potential alternatives to current lithium–ion batteries. Adv. Energy Mater. 2012, 2, 710–721.CrossRefGoogle Scholar
  4. [4]
    Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.CrossRefGoogle Scholar
  5. [5]
    Zhu, Y. Q.; Guo, H. Z.; Wu, Y.; Cao, C. B.; Tao, S.; Wu, Z. Y. Surfaceenabled superior lithium storage of high-quality ultrathin NiO nanosheets. J. Mater. Chem. A 2014, 2, 7904–7911.CrossRefGoogle Scholar
  6. [6]
    Zhu, Y. Q.; Cao, C. B. A simple synthesis of two-dimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim. Acta 2015, 176, 141–148.CrossRefGoogle Scholar
  7. [7]
    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.CrossRefGoogle Scholar
  8. [8]
    Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081.CrossRefGoogle Scholar
  9. [9]
    Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80.CrossRefGoogle Scholar
  10. [10]
    Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517.CrossRefGoogle Scholar
  11. [11]
    Liu, G. Q.; Wen, L.; Li, Y.; Kou, Y. L. Synthesis and electrochemical properties of P2-Na2/3Ni1/3Mn2/3O2. Ionics 2015, 21, 1011–1016.CrossRefGoogle Scholar
  12. [12]
    Tang, W.; Song, X. H.; Du, Y. H.; Peng, C. X.; Lin, M.; Xi, S. B.; Tian, B. B.; Zheng, J. X.; Wu, Y. P.; Pan, F. et al. High-performance NaFePO4 formed by aqueous ion-exchange and its mechanism for advanced sodium ion batteries. J. Mater. Chem. A 2016, 4, 4882–4892.CrossRefGoogle Scholar
  13. [13]
    Gopalakrishnan, J.; Rangan, K. K. Vanadium phosphate (V2(PO4)3): A novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3). Chem. Mater. 1992, 4, 745–747.CrossRefGoogle Scholar
  14. [14]
    Guo, D. L.; Qin, J. W.; Yin, Z. G.; Bai, J. M.; Sun, Y. K.; Cao, M. H. Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 2017, 45, 136–147.CrossRefGoogle Scholar
  15. [15]
    Lim, S. J.; Han, D. W.; Nam, D. H.; Hong, K. S.; Eom, J. Y.; Ryu, W. H.; Kwon, H. S. Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries. J. Mater. Chem. A 2014, 2, 19623–19632.CrossRefGoogle Scholar
  16. [16]
    Jian, Z. L.; Han, W. Z.; Lu, X.; Yang, H. X.; Hu, Y. S.; Zhou, J.; Zhou, Z. B.; Li, J. Q.; Chen, W.; Chen, D. F. et al. Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv. Energy Mater. 2013, 3, 156–160.CrossRefGoogle Scholar
  17. [17]
    Kang, J.; Baek, S.; Mathew, V.; Gim, J.; Song, J. J.; Park, H.; Chae, E.; Rai, A. K.; Kim, J. High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. J. Mater. Chem. 2012, 22, 20857–20860.CrossRefGoogle Scholar
  18. [18]
    Bui, K. M.; Dinh, V. A.; Okada, S.; Ohno, T. Hybrid functional study of the NASICON-type Na3V2(PO4)3: Crystal and electronic structures, and polaron-Na vacancy complex diffusion. Phys. Chem. Chem. Phys. 2015, 17, 30433–30439.CrossRefGoogle Scholar
  19. [19]
    Yamada, A.; Yonemura, M.; Takei, Y.; Sonoyama, N.; Kanno, R. Fast charging LiFePO4. Electrochem. Solid-State Lett. 2005, 8, A55–A58.CrossRefGoogle Scholar
  20. [20]
    Liu, H. W.; Cheng, C. X.; Huang, X. T.; Li, J. L. Hydrothermal synthesis and rate capacity studies of Li3V2(PO4)3 nanorods as cathode material for lithium-ion batteries. Electrochim. Acta 2010, 55, 8461–8465.CrossRefGoogle Scholar
  21. [21]
    Chen, L.; Zhao, Y. M.; Liu, S. H.; Zhao, L. Hard carbon wrapped Na3V2(PO4)3@C porous composite extending cycling lifespan for sodiumion batteries. ACS Appl. Mater. Interfaces 2017, 9, 44485–44493.CrossRefGoogle Scholar
  22. [22]
    Chen, H. Z.; Zhang, B.; Wang, X.; Dong, P. Y.; Tong, H.; Zheng, J. C.; Yu, W. J.; Zhang, J. F. CNT-decorated Na3V2(PO4)3 microspheres as a high-rate and cycle-stable cathode material for sodium ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 3590–3595.CrossRefGoogle Scholar
  23. [23]
    Zhang, J. X.; Fang, Y. J.; Xiao, L. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 7177–7184.CrossRefGoogle Scholar
  24. [24]
    Li, F.; Zhu, Y. E.; Sheng, J.; Yang, L. P.; Zhang, Y.; Zhou, Z. GO-induced preparation of flake-shaped Na3V2(PO4)3@rGO as high-rate and long-life cathodes for sodium-ion batteries. J. Mater. Chem. A 2017, 5, 25276–25281.CrossRefGoogle Scholar
  25. [25]
    Rajagopalan, R.; Zhang, L.; Dou, S. X.; Liu, H. K. Tuned in situ growth of nanolayered rGO on 3D Na3V2(PO4)3 matrices: A step toward long lasting, high power Na–ion batteries. Adv. Mater. Interfaces 2016, 3, 1600007.CrossRefGoogle Scholar
  26. [26]
    Wang, H. G.; Wu, Z.; Meng, F. L.; Ma, D. L.; Huang, X. L.; Wang, L. M.; Zhang, X. B. Nitrogen–doped porous carbon nanosheets as low–cost, highperformance anode material for sodium–ion batteries. ChemSusChem 2013, 6, 56–60.CrossRefGoogle Scholar
  27. [27]
    Shen, W.; Wang, C.; Xu, Q. J.; Liu, H. M.; Wang, Y. G. Nitrogen–dopinginduced defects of a carbon coating layer facilitate Na–storage in electrode materials. Adv. Energy Mater. 2015, 5, 1400982.CrossRefGoogle Scholar
  28. [28]
    Su, F. B.; Poh, C. K.; Chen, J. S.; Xu, G. W.; Wang, D.; Li, Q.; Lin, J. Y.; Lou, X. W. Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 2011, 4, 717–724.CrossRefGoogle Scholar
  29. [29]
    Liang, X. H.; Ou, X.; Zheng, F. H.; Pan, Q. C.; Xiong, X. H.; Hu, R. Z.; Yang, C. H.; Liu, M. L. Surface modification of Na3V2(PO4)3 by nitrogen and sulfur dual-doped carbon layer with advanced sodium storage property. ACS Appl. Mater. Interfaces 2017, 9, 13151–13162.CrossRefGoogle Scholar
  30. [30]
    Zhang, H.; Hasa, I.; Buchholz, D.; Qin, B. S.; Passerini, S. Effects of nitrogen doping on the structure and performance of carbon coated Na3V2(PO4)3 cathodes for sodium-ion batteries. Carbon 2017, 124, 334–341.CrossRefGoogle Scholar
  31. [31]
    Guo, J. Z.; Wu, X. L.; Wan, F.; Wang, J.; Zhang, X. H.; Wang, R. S. A superior Na3V2(PO4)3–based nanocomposite enhanced by both N–doped coating carbon and graphene as the cathode for sodium–ion batteries. Chem. Eur. —J. 2015, 21, 17371–17378.CrossRefGoogle Scholar
  32. [32]
    Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430.CrossRefGoogle Scholar
  33. [33]
    Ryou, M. H.; Lee, Y. M.; Park, J. K.; Choi, J. W. Mussel–inspired polydopamine–treated polyethylene separators for high–power Li–ion batteries. Adv. Mater. 2011, 23, 3066–3070.CrossRefGoogle Scholar
  34. [34]
    Guo, L. Q.; Liu, Q.; Li, G. L.; Shi, J. B.; Liu, J. Y.; Wang, T.; Jiang, G. B. A mussel-inspired polydopamine coating as a versatile platform for the in situ synthesis of graphene-based nanocomposites. Nanoscale 2012, 4, 5864–5867.CrossRefGoogle Scholar
  35. [35]
    Yoon, T. H.; Park, Y. J. Polydopamine-assisted carbon nanotubes/Co3O4 composites for rechargeable Li-air batteries. J. Power Sources 2013, 244, 344–353.CrossRefGoogle Scholar
  36. [36]
    Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.CrossRefGoogle Scholar
  37. [37]
    Zhao, L.; Fan, L. Z.; Zhou, M. Q.; Guan, H.; Qiao, S. Y.; Antonietti, M.; Titirici, M. M. Nitrogen–containing hydrothermal carbons with superior performance in supercapacitors. Adv. Mater. 2010, 22, 5202–5206.CrossRefGoogle Scholar
  38. [38]
    Fang, Y. J.; Xiao, L. F.; Ai, X. P.; Cao, Y. L.; Yang, H. X. Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv. Mater. 2015, 27, 5895–5900.CrossRefGoogle Scholar
  39. [39]
    Yang, J.; Han, D. W.; Jo, M. R.; Song, K.; Kim, Y. I.; Chou, S. L.; Liu, H. K.; Kang, Y. M. Na3V2(PO4)3 particles partly embedded in carbon nanofibers with superb kinetics for ultra-high power sodium ion batteries. J. Mater. Chem. A 2015, 3, 1005–1009.CrossRefGoogle Scholar
  40. [40]
    Li, J. W.; Cao, X. X.; Pan, A. Q.; Zhao, Y. L.; Yang, H. L.; Cao, G. Z.; Liang, S. Q. Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chem. Eng. —J. 2018, 335, 301–308.CrossRefGoogle Scholar
  41. [41]
    Xiao, H.; Huang, X. B.; Ren, Y. R.; Wang, H. Y.; Ding, J. N.; Zhou, S. B.; Ding, X.; Chen, Y. D. Enhanced sodium ion storage performance of Na3V2(PO4)3 with N-doped carbon by folic acid as carbon-nitrogen source. J. Alloys Compd. 2018, 732, 454–459.CrossRefGoogle Scholar
  42. [42]
    Yao, X. Y.; Zhao, C. Y.; Kong, J. H.; Zhou, D.; Lu, X. H. Polydopamineassisted synthesis of hollow NiCo2O4 nanospheres as high-performance lithium ion battery anodes. RSC Adv. 2014, 4, 37928–37933.CrossRefGoogle Scholar
  43. [43]
    Wang, H. B.; Maiyalagan, T.; Wang, X. Review on recent progress in nitrogen-doped graphene: Synthesis, characterization, and its potential applications. ACS Catal. 2012, 2, 781–794.CrossRefGoogle Scholar
  44. [44]
    Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three-dimensional graphene. Nano Res. 2015, 8, 184–192.CrossRefGoogle Scholar
  45. [45]
    Zhu, Y. Q.; Cao, T.; Cao, C. B.; Ma, X. L.; Xu, X. Y.; Li, Y. D. A general synthetic strategy to monolayer graphene. Nano Res. 2018, 11, 3088–3095.CrossRefGoogle Scholar
  46. [46]
    Lu, C.; Li, Z. Z.; Yu, L. H.; Zhang, L.; Xia, Z.; Jiang, T.; Yin, W. J.; Dou, S. X.; Liu, Z. F.; Sun, J. Y. Nanostructured Bi2S3 encapsulated within three-dimensional N-doped graphene as active and flexible anodes for sodium-ion batteries. Nano Res. 2018, 11, 4614–4626.CrossRefGoogle Scholar
  47. [47]
    Wang, S. Y.; Zhao, X. S.; Cochell, T.; Manthiram, A. Nitrogen-doped carbon nanotube/graphite felts as advanced electrode materials for vanadium redox flow batteries. J. Phys. Chem. Lett. 2012, 3, 2164–2167.CrossRefGoogle Scholar
  48. [48]
    Shin, W. H.; Jeong, H. M.; Kim, B. G.; Kang, J. K.; Choi, J. W. Nitrogendoped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 2012, 12, 2283–2288.CrossRefGoogle Scholar
  49. [49]
    Qu, K. G.; Zheng, Y.; Dai, S.; Qiao, S. Z. Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction. Nanoscale 2015, 7, 12598–12605.CrossRefGoogle Scholar
  50. [50]
    Liang, Y. R.; Liu, H.; Li, Z. H.; Fu, R. W.; Wu, D. C. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors. J. Mater. Chem. A 2013, 1, 15207–15211.CrossRefGoogle Scholar
  51. [51]
    Zhu, Y. Q.; Guo, H. Z.; Zhai, H. Z.; Cao, C. B. Microwave-assisted and gram-scale synthesis of ultrathin SnO2 nanosheets with enhanced lithium storage properties. ACS Appl. Mater. Interfaces 2015, 7, 2745–2753.CrossRefGoogle Scholar
  52. [52]
    Zhu, Y. Q.; Cao, T.; Li, Z.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Two-dimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage. Sci. China Mater., in press, DOI: 10.1007/s40843-018-9324-0.Google Scholar
  53. [53]
    Zhang, X.; Ma, J.; Hu, P.; Chen, B.; Lu, C.; Zhou, X.; Han, P.; Chen, L.; Cui, G. An insight into failure mechanism of NASICON-structured Na3V2(PO4)3 in hybrid aqueous rechargeable battery. J. Energy Chem., in press, DOI: 10.1016/j.jechem.2018.05.016.Google Scholar
  54. [54]
    Chen, Y. J.; Xu, Y. L.; Sun, X. F.; Zhang, B. F.; He, S. N.; Wang, C. F-doping and V-defect synergetic effects on Na3V2(PO4)3/C composite: A promising cathode with high ionic conductivity for sodium ion batteries. J. Power Sources 2018, 397, 307–317.CrossRefGoogle Scholar
  55. [55]
    Klee, R.; Wiatrowski, M.; Aragón, M. J.; Lavela, P.; Ortiz, G. F.; Alcántara, R.; Tirado, J. L. Improved surface stability of C+MxOy@Na3V2(PO4)3 prepared by ultrasonic method as cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 1471–1478.CrossRefGoogle Scholar
  56. [56]
    Zhu, Y. Q.; Cao, C. B.; Zhang, J. T.; Xu, X. Y. Two-dimensional ultrathin ZnCo2O4 nanosheets: General formation and lithium storage application. J. Mater. Chem. A 2015, 3, 9556–9564.CrossRefGoogle Scholar
  57. [57]
    Kretschmer, K.; Sun, B.; Zhang, J. Q.; Xie, X. Q.; Liu, H.; Wang, G. X. 3D interconnected carbon fiber network–enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium–ion batteries. Small 2017, 13, 1603318.CrossRefGoogle Scholar
  58. [58]
    Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.CrossRefGoogle Scholar
  59. [59]
    Lou, S. F.; Cheng, X. Q.; Zhao, Y.; Lushington, A.; Gao, J. L.; Li, Q.; Zuo, P. J.; Wang, B. Q.; Gao, Y. Z.; Ma, Y. L. et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 2017, 34, 15–25.CrossRefGoogle Scholar
  60. [60]
    Lou, S. F.; Cheng, X. Q.; Wang, L.; Gao, J. L.; Li, Q.; Ma, Y. L.; Gao, Y. Z.; Zuo, P. J.; Du, C. Y.; Yin, G. P. High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J. Power Sources 2017, 361, 80–86.CrossRefGoogle Scholar
  61. [61]
    Li, Q.; Zhang, H.; Lou, S. F.; Qu, Y. T.; Zuo, P. J.; Ma, Y. L.; Cheng, X. Q.; Du, C. Y.; Gao, Y. Z.; Yin, G. P. Pseudocapacitive Li+ intercalation in ZnO/ZnO@C composites enables high-rate lithium-ion storage and stable cyclability. Ceram. Int. 2017, 43, 11998–12004.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hyeongwoo Kim
    • 1
    • 2
  • Hyojun Lim
    • 1
    • 3
  • Hyung-Seok Kim
    • 1
  • Ki Jae Kim
    • 4
  • Dongjin Byun
    • 2
  • Wonchang Choi
    • 1
    • 3
    Email author
  1. 1.Center for Energy Storage ResearchKorea Institute of Science and TechnologySeoulRepublic of Korea
  2. 2.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Division of Energy & Environment Technology, KIST SchoolKorea University of Science and TechnologySeoulRepublic of Korea
  4. 4.Department of Energy EngineeringKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations