Nano Research

, Volume 12, Issue 2, pp 381–388 | Cite as

Flexible and reusable cap-like thin Fe2O3 film for SERS applications

  • Jiangtao Xu
  • Xiaoting Li
  • Yuxiang Wang
  • Ronghui Guo
  • Songmin ShangEmail author
  • Shouxiang JiangEmail author
Research Article


Cap-like α-Fe2O3 films are fabricated and deposited onto quartz fabric by using radio frequency magnetron sputtering and annealing. The treated fabric sample in this study shows highly sensitive surface-enhanced Raman scattering (SERS) and excellent flexibility, reproducibility and stability. In addition, the sample can be recovered after a washing process with an organic solvent and repeatedly used. The sensitive SERS performance is attributed to chemical enhancement through a charge transfer process. Moreover, the SERS performance is also found to be dependent on the light coupling effect. When the light absorbance rate of the α-Fe2O3 films increases at a wavelength near that of laser light, the film shows excellent sensitivity due to light coupling effect.


α-Fe2O3 quartz fabric flexible SERS Raman sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12274_2018_2227_MOESM1_ESM.pdf (4.7 mb)
Flexible and reusable cap-like thin Fe2O3 film for SERS applications


  1. [1]
    Courtecuisse, S.; Cansell, F.; Fabre, D.; Petitet, J. P. Comparative Raman spectroscopy of nitromethane-h 3, nitromethane-d 3 and nitroethane up to 20 GPa. J. Chem. Phys. 1998, 108, 7350–7355.Google Scholar
  2. [2]
    Miao, D. G.; Xu, J. T.; Jiang, S. X.; Ning, X.; Liu, J.; Shang, S. M. Crystallization temperature investigation of Cu2ZnSnS4 by using differential scanning calorimetry (DSC). Ceram. Int. 2018, 44, 4256–4261.Google Scholar
  3. [3]
    Nie, S. M.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106.Google Scholar
  4. [4]
    Wang, X. T.; Shi, W. S.; She, G. W.; Mu, L. X. Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. Phys. Chem. Chem. Phys. 2012, 14, 5891–5901.Google Scholar
  5. [5]
    Fan, W.; Lee, Y. H.; Pedireddy, S.; Zhang, Q.; Liu, T. X.; Ling, X. Y. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale 2014, 6, 4843–4851.Google Scholar
  6. [6]
    Huang, S. X.; Ling, X.; Liang, L. B.; Song, Y.; Fang, W. J.; Zhang, J.; Kong, J.; Meunier, V.; Dresselhaus, M. S. S. Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett. 2015, 15, 2892–2901.Google Scholar
  7. [7]
    Huang, J. A.; Zhao, Y. Q.; Zhang, X. J.; He, L. F.; Wong, T. L.; Chui, Y. S.; Zhang, W. J.; Lee, S. T. Ordered Ag/Si nanowires array: Wide-range surfaceenhanced Raman spectroscopy for reproducible biomolecule detection. Nano Lett. 2013, 13, 5039–5045.Google Scholar
  8. [8]
    Luo, H. R.; Wang, X. H.; Huang, Y. Q.; Lai, K. Q.; Rasco, B. A.; Fan, Y. X. Rapid and sensitive surface-enhanced Raman spectroscopy (SERS) method combined with gold nanoparticles for determination of paraquat in apple juice. J. Sci. Food. Agric. 2018, 98, 3892–3898.Google Scholar
  9. [9]
    He, L. L.; Liu, C. Q.; Tang, J.; Zhou, Y. C.; Yang, H.; Liu, R. Y.; Hu, J. G. Self-catalytic stabilized Ag-Cu nanoparticles with tailored SERS response for plasmonic photocatalysis. Appl. Surf. Sci. 2018, 434, 265–272.Google Scholar
  10. [10]
    Li, J.; Zhang, W. N.; Lei, H. X.; Li, B. J. Ag nanowire/nanoparticledecorated MoS2 monolayers for surface-enhanced Raman scattering applications. Nano Res. 2018, 11, 2181–2189.Google Scholar
  11. [11]
    Stamplecoskie, K. G.; Scaiano, J. C.; Tiwari, V. S.; Anis, H. Optimal size of silver nanoparticles for surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2011, 115, 1403–1409.Google Scholar
  12. [12]
    Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.Google Scholar
  13. [13]
    Cong, S.; Yuan, Y. Y.; Chen, Z. G.; Hou, J. Y.; Yang, M.; Su, Y. L.; Zhang, Y. Y.; Li, L.; Li, Q. W.; Geng, F. X. et al. Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.Google Scholar
  14. [14]
    Wu, H.; Wang, H.; Li, G. H. Metal oxide semiconductor SERS-active substrates by defect engineering. Analyst 2017, 142, 326–335.Google Scholar
  15. [15]
    Lin, J.; Hao, W.; Shang, Y.; Wang, X. T.; Qiu, D. L.; Ma, G. S.; Chen, C.; Li, S. Z.; Guo, L. Direct experimental observation of facet-dependent SERS of Cu2O polyhedra. Small 2018, 14, 1703274.Google Scholar
  16. [16]
    Yang, L. L.; Yang, Y.; Ma, Y. F.; Li, S.; Wei, Y. Q.; Huang, Z. R.; Long, N. V. Fabrication of semiconductor ZnO nanostructures for versatile SERS application. Nanomaterials 2017, 7, 398.Google Scholar
  17. [17]
    Yan, X. F.; Xu, Y.; Tian, B. Z.; Lei, J. Y.; Zhang, J. L.; Wang, L. Z. Operando SERS self-monitoring photocatalytic oxidation of aminophenol on TiO2 semiconductor. Appl Catal. B-Environ. 2018, 224, 305–309.Google Scholar
  18. [18]
    Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor materials in analytical applications of surface-enhanced Raman scattering. J. Raman Spectrosc. 2016, 47, 51–58.Google Scholar
  19. [19]
    Qi, D. Y.; Lu, L. J.; Wang, L. Z.; Zhang, J. L. Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling. J. Am. Chem. Soc. 2014, 136, 9886–9889.Google Scholar
  20. [20]
    Jiang, L.; Yin, P. G.; You, T. T.; Wang, H.; Lang, X. F.; Guo, L.; Yang, S. H. Highly reproducible surface-enhanced Raman spectra on semiconductor SnO2 octahedral nanoparticles. ChemPhysChem 2012, 13, 3932–3936.Google Scholar
  21. [21]
    Zhang, B.; Liu, G. N.; Cheng, M.; Gao, Y.; Zhao, L. J.; Li, S.; Liu, F. M.; Yan, X.; Zhang, T.; Sun, P. et al. The preparation of reduced graphene oxide-encapsulated α-Fe2O3 hybrid and its outstanding NO2 gas sensing properties at room temperature. Sensor. Actuat. B-Chem. 2018, 261, 252–263.Google Scholar
  22. [22]
    Li, M.; Zhou, S. Q. α-Fe2O3/polyaniline nanocomposites as an effective catalyst for improving the electrochemical performance of microbial fuel cell. Chem. Eng. J. 2018, 339, 539–546.Google Scholar
  23. [23]
    Formoso, P.; Muzzalupo, R.; Tavano, L.; De Filpo, G.; Nicoletta, F. P. Nanotechnology for the environment and medicine. Mini-Rev. Med. Chem. 2016, 16, 668–675.Google Scholar
  24. [24]
    Fu, X. Q.; Bei, F. L.; Wang, X.; Yang, X. J.; Lu, L. D. Surface-enhanced Raman scattering of 4-mercaptopyridine on sub-monolayers of a-Fe2O3 nanocrystals (sphere, spindle, cube). J. Raman Spectrosc. 2009, 40, 1290–1295.Google Scholar
  25. [25]
    Bao, F.; Yao, J. L.; Gu, R. A. Synthesis of magnetic Fe2O3/Au Core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. Langmuir 2009, 25, 10782–10787.Google Scholar
  26. [26]
    Bian, L. L.; Liu, Y. J.; Zhu, G. X.; Yan, C.; Zhang, J. H.; Yuan, A. H. Ag@CoFe2O4/Fe2O3 nanorod arrays on carbon fiber cloth as SERS substrate and photo-Fenton catalyst for detection and degradation of R6G. Ceram. Int. 2018, 44, 7580–7587.Google Scholar
  27. [27]
    Xiong, W.; Zhao, Q. D.; Li, X. Y.; Wang, L. Z. Multifunctional plasmonic Co-doped Fe2O3@polydopamine-Au for adsorption, photocatalysis, and SERS-based sensing. Part. Part. Syst. Char. 2016, 33, 602–609.Google Scholar
  28. [28]
    Li, M. W.; Qiu, Y. Y.; Fan, C. C.; Cui, K.; Zhang, Y. M.; Xiao, Z. Y. Design of SERS nanoprobes for Raman imaging: Materials, critical factors and architectures. Acta Pharm. Sin. B 2018, 8, 381–389.Google Scholar
  29. [29]
    Kumar, S.; Goel, P.; Singh, J. P. Flexible and robust SERS active substrates for conformal rapid detection of pesticide residues from fruits. Sensor. Actuat. B-Chem. 2017, 241, 577–583.Google Scholar
  30. [30]
    Chen, N.; Ding, P.; Shi, Y.; Jin, T. Y.; Su, Y. Y.; Wang, H. Y.; He, Y. Portable and reliable surface-enhanced Raman scattering silicon chip for signal-on detection of trace trinitrotoluene explosive in real systems. Anal. Chem. 2017, 89, 5072–5078.Google Scholar
  31. [31]
    Liyanage, T.; Rael, A.; Shaffer, S.; Zaidi, S.; Goodpaster, J. V.; Sardar, R. Fabrication of a self-assembled and flexible SERS nanosensor for explosive detection at parts-per-quadrillion levels from fingerprints. Analyst 2018, 143, 2012–2022.Google Scholar
  32. [32]
    Lin, Y.; Bunker, C. E.; Fernando, K. A. S.; Connell, J. W. Aqueously dispersed silver nanoparticle-decorated boron nitride nanosheets for reusable, thermal oxidation-resistant surface enhanced Raman spectroscopy (SERS) devices. ACS Appl. Mater. Interfaces 2012, 4, 1110–1117.Google Scholar
  33. [33]
    Liu, J. W.; Wang, J. L.; Huang, W. R.; Yu, L.; Ren, X. F.; Wen, W. C.; Yu, S. H. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate. Sci. Rep. 2012, 2, 987.Google Scholar
  34. [34]
    Li, D.; Li, D. W.; Li, Y.; Fossey, J. S.; Long, Y. T. Cyclic electroplating and stripping of silver on Au@SiO2 core/shell nanoparticles for sensitive and recyclable substrate of surface-enhanced Raman scattering. J. Mater. Chem. 2010, 20, 3688–3693.Google Scholar
  35. [35]
    Lv, B. L.; Xu, Y.; Tian, H.; Wu, D.; Sun, Y. H. Synthesis of Fe3O4\SiO2\Ag nanoparticles and its application in surface-enhanced Raman scattering. J. Solid State Chem. 2010, 183, 2968–2973.Google Scholar
  36. [36]
    Li, X. H.; Chen, G. Y.; Yang, L. B.; Jin, Z.; Liu, J. H. Multifunctional Aucoated TiO2 nanotube arrays as recyclable SERS substrates for multifold organic pollutants detection. Adv. Funct. Mater. 2010, 20, 2815–2824.Google Scholar
  37. [37]
    Chen, J. M.; Huang, Y. J.; Kannan, P.; Zhang, L.; Lin, Z. Y.; Zhang, J. W.; Chen, T.; Guo, L. H. Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal. Chem. 2016, 88, 2149–2155.Google Scholar
  38. [38]
    Gong, Z. J.; Du, H. J.; Cheng, F. S.; Wang, C.; Wang, C. C.; Fan, M. K. Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl. Mater. Interfaces 2014, 6, 21931–21937.Google Scholar
  39. [39]
    Yu, W. W.; White, I. M. Inkjet-printed paper-based SERS dipsticks and swabs for trace chemical detection. Analyst 2013, 138, 1020–1025.Google Scholar
  40. [40]
    Miao, D. G.; Jiang, S. X.; Shang, S. M.; Chen, Z. M. Effect of heat treatment on infrared reflection property of Al-doped ZnO films. Sol. Energ. Mat. Sol. C 2014, 127, 163–168.Google Scholar
  41. [41]
    Miao, D. G.; Hu, H. W.; Gan, L. Fabrication of high infrared reflective Al-doped ZnO thin films through electropulsing treatment for solar control. J. Alloys Compd. 2015, 639, 400–405.Google Scholar
  42. [42]
    Nasibulin, A. G.; Rackauskas, S.; Jiang, H.; Tian, Y.; Mudimela, P. R.; Shandakov, S. D.; Nasibulina, L. I.; Jani, S.; Kauppinen, E. I. Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2009, 2, 373–379.Google Scholar
  43. [43]
    Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449.Google Scholar
  44. [44]
    Jiang, S. X.; Xu, J. T.; Miao, D. G.; Peng, L. H.; Shang, S. M.; Zhu, P. Water-repellency, ultraviolet protection and infrared emissivity properties of AZO film on polyester fabric. Ceram. Int. 2017, 43, 2424–2430.Google Scholar
  45. [45]
    Jiang, S. X.; Peng, L. H.; Guo, R. H.; Miao, D. G.; Shang, S. M.; Xu, J. T.; Li, A. S. Preparation and characterization of Fe2O3 coating on quartz fabric by electron beam evaporation. Ceram. Int. 2016, 42, 19386–19392.Google Scholar
  46. [46]
    Yang, J. J.; Chen, D. M.; Zhu, Y.; Zhang, Y. M.; Zhu, Y. F. 3D-3D porous Bi2WO6/graphene hydrogel composite with excellent synergistic effect of adsorption-enrichment and photocatalytic degradation. Appl. Catal. B-Environ. 2017, 205, 228–237.Google Scholar
  47. [47]
    Shang, Y. Y.; Chen, X.; Liu, W. W.; Tan, P. F.; Chen, H. Y.; Wu, L. D.; Ma, C.; Xiong, X.; Pan, J. Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsionassisted co-precipitation method. Appl. Catal. B-Environ. 2017, 204, 78–88.Google Scholar
  48. [48]
    Su, S.; Zhang, C.; Yuwen, L. H.; Chao, J.; Zuo, X. L.; Liu, X. F.; Song, C. Y.; Fan, C. H.; Wang, L. H. Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 18735–18741.Google Scholar
  49. [49]
    He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H. Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: Electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. ACS Nano 2009, 3, 3993–4002.Google Scholar
  50. [50]
    Wei, H.; Hao, F.; Huang, Y. Z.; Wang, W. Z.; Nordlander, P.; Xu, H. X. Polarization dependence of surface-enhanced Raman scattering in gold nanoparticle-nanowire systems. Nano Lett. 2008, 8, 2497–2502.Google Scholar
  51. [51]
    El Qada, E. N.; Allen, S. J.; Walker, G. M. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chem. Eng. J. 2006, 124, 103–110.Google Scholar
  52. [52]
    Wu, K. Y.; Li, T.; Schmidt, M. S.; Rindzevicius, T.; Boisen, A.; Ndoni, S.; Gold nanoparticles sliding on recyclable nanohoodoos-engineered for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2018, 28, 1704818.Google Scholar
  53. [53]
    Ling, X.; Moura, L. G.; Pimenta, M. A.; Zhang, J. Charge-transfer mechanism in graphene-enhanced Raman scattering. J. Phys. Chem. C 2012, 116, 25112–25118.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Textiles and ClothingThe Hong Kong Polytechnic University, Hong KongHong KongChina
  2. 2.College of Light Industry, Textile and Food EngineeringSichuan UniversityChengduChina

Personalised recommendations