Advertisement

Nano Research

, Volume 12, Issue 2, pp 375–380 | Cite as

Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes

  • Bo Ma
  • Zhengchun Yang
  • Yantao ChenEmail author
  • Zhihao YuanEmail author
Research Article

Abstract

Transition metal phosphides (TMPs) are promising candidates for noble metal free electrocatalysts in water splitting applications. In this work, we present the facile synthesis of nickel cobalt phosphide electrocatalyst with three-dimensional nanostructure (3D-NiCoP) on the nickel foam, via hydrothermal reaction and phosphorization. The as-prepared electrocatalyst exhibits an excellent activity for hydrogen evolution reaction (HER) in both acidic and alkaline electrolytes, with small overpotentials to drive 10 mA/cm2 (80 mV for 0.5 M H2SO4, 105 mV for 1 M KOH), small Tafel slopes (37 mV/dec for 0.5 M H2SO4, 79 mV/dec for 1 M KOH), and satisfying durability in long-term electrolysis. 3D-NiCoP also shows a superior HER activity compared to single metal phosphide, such as cobalt phosphide and nickel phosphide. The outstanding performance for HER suggests the great potential of 3D-NiCoP as a highly efficient electrocatalyst for water splitting technology.

Keywords

nickel cobalt phosphide water splitting hydrogen evolution reaction electrocatalyst 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51702234).

Supplementary material

12274_2018_2226_MOESM1_ESM.pdf (3.2 mb)
Electronic Supplementary Material

References

  1. [1]
    Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.Google Scholar
  2. [2]
    Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.Google Scholar
  3. [3]
    Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper–platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. 2017, 129, 16263–16267.Google Scholar
  4. [4]
    Ge, J. J.; Wei, P.; Wu, G.; Liu, Y. D.; Yuan, T. W.; Li, Z. J.; Qu, Y. T.; Wu, Y.; Li, H.; Zhuang, Z. B. et al. Ultrathin palladium nanomesh for electrocatalysis. Angew. Chem. 2018, 130, 3493–3496.Google Scholar
  5. [5]
    Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.Google Scholar
  6. [6]
    Wu, G.; Chen, W. X.; Zheng, X. S.; He, D. P.; Luo, Y. Q.; Wang, X. Q.; Yang, J.; Wu, Y.; Yan, W. S.; Zhuang, Z. B. et al. Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction. Nano Energy 2017, 38, 167–174.Google Scholar
  7. [7]
    Wang, X. Q.; Chen, Z.; Zhao, X. Y.; Yao, T.; Chen, W. X.; You, R.; Zhao, C. M.; Wu, G.; Wang, J.; Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem. 2018, 130, 1962–1966.Google Scholar
  8. [8]
    Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.Google Scholar
  9. [9]
    Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299.Google Scholar
  10. [10]
    Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.Google Scholar
  11. [11]
    Sun, W. Y.; Li, P.; Liu, X.; Shi, J. J.; Sun, H. M.; Tao, Z. L.; Li, F. J.; Chen, J. Size-controlled MoS2 nanodots supported on reduced graphene oxide for hydrogen evolution reaction and sodium-ion batteries. Nano Res. 2017, 10, 2210–2222.Google Scholar
  12. [12]
    Sun, K. A.; Liu, Y. Q.; Pan, Y.; Zhu, H. Y.; Zhao, J. C.; Zeng, L. Y.; Liu, Z.; Liu, C. G. Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Res. 2018, 11, 4368–4379.Google Scholar
  13. [13]
    Chen, Y. T.; Ren, R.; Wen, Z. H.; Ci, S. Q.; Chang, J. B.; Mao, S.; Chen, J. H. Superior electrocatalysis for hydrogen evolution with crumpled graphene/tungsten disulfide/tungsten trioxide ternary nanohybrids. Nano Energy 2018, 47, 66–73.Google Scholar
  14. [14]
    Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.Google Scholar
  15. [15]
    Zhang, J. T.; Chen, Y. L.; Liu, M.; Du, K.; Zhou, Y.; Li, Y. P.; Wang, Z. J.; Zhang, J. 1T@2H-MoSe2 nanosheets directly arrayed on Ti plate: An efficient electrocatalytic electrode for hydrogen evolution reaction. Nano Res. 2018, 11, 4587–4598.Google Scholar
  16. [16]
    Wang, F. M.; Li, Y. C.; Shifa, T. A.; Liu, K. L.; Wang, F.; Wang, Z. X.; Xu, P.; Wang, Q. S.; He, J. Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation. Angew. Chem., Int. Ed. 2016, 55, 6919–6924.Google Scholar
  17. [17]
    Chen, T.; Tan, Y. W. Hierarchical CoNiSe2 nano-architecture as a highperformance electrocatalyst for water splitting. Nano Res. 2018, 11, 1331–1344.Google Scholar
  18. [18]
    Wang, J. B.; Chen, W. L.; Wang, T.; Bate, N.; Wang, C. L.; Wang, E. B. A strategy for highly dispersed Mo2C/MoN hybrid nitrogen-doped graphene via ion-exchange resin synthesis for efficient electrocatalytic hydrogen reduction. Nano Res. 2018, 11, 4535–4548.Google Scholar
  19. [19]
    Li, J. S.; Wang, Y.; Liu, C. H.; Li, S. L.; Wang, Y. G.; Dong, L. Z.; Dai, Z. H.; Li, Y. F.; Lan, Y. Q. Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 2016, 7, 11204.Google Scholar
  20. [20]
    Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387–392.Google Scholar
  21. [21]
    Shi, Z. P.; Nie, K. Q.; Shao, Z.-J.; Gao, B. X.; Lin, H. L.; Zhang, H. B.; Liu, B. L.; Wang, Y. X.; Zhang, Y. H.; Sun, X. H. et al. Phosphorus- Mo2C@ carbon nanowires toward efficient electrochemical hydrogen evolution: Composition, structural and electronic regulation. Energy Environ. Sci. 2017, 10, 1262–1271.Google Scholar
  22. [22]
    Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.Google Scholar
  23. [23]
    Ren, B. W.; Li, D. Q.; Jin, Q. Y.; Cui, H.; Wang, C. X. A self-supported porous WN nanowire array: An efficient 3D electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 19072–19078.Google Scholar
  24. [24]
    Lv, Z.; Tahir, M.; Lang, X. W.; Yuan, G.; Pan, L.; Zhang, X. W.; Zou, J. J. Well-dispersed molybdenum nitrides on a nitrogen-doped carbon matrix for highly efficient hydrogen evolution in alkaline media. J. Mater. Chem. A 2017, 5, 20932–20937.Google Scholar
  25. [25]
    Wang, M. Q.; Ye, C.; Xu, M. W.; Bao, S. J. MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: Self-supported electrodes for efficient hydrogen generation. Nano Res. 2018, 11, 4728–4734.Google Scholar
  26. [26]
    Xing, Z. C.; Liu, Q.; Asiri, A. M.; Sun, X. P. High-efficiency electrochemical hydrogen evolution catalyzed by tungsten phosphide submicroparticles. ACS Catal. 2015, 5, 145–149.Google Scholar
  27. [27]
    Pan, Y.; Chen, Y. J.; Lin, Y.; Cui, P. X.; Sun, K. A.; Liu, Y. Q.; Liu, C. G. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J. Mater. Chem. A 2016, 4, 14675–14686.Google Scholar
  28. [28]
    Yang, J.; Zhang, F. J.; Wang, X.; He, D. S.; Wu, G.; Yang, Q. H.; Hong, X.; Wu, Y.; Li, Y. D. Porous molybdenum phosphide nano-octahedrons derived from confined phosphorization in UIO-66 for efficient hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 12854–12858.Google Scholar
  29. [29]
    Wang, X. D.; Xu, Y. F.; Rao, H. S.; Xu, W. J.; Chen, H. Y.; Zhang, W. X.; Kuang, D. B.; Su, C. Y. Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 2016, 9, 1468–1475.Google Scholar
  30. [30]
    Xu, K.; Cheng, H.; Lv, H. F.; Wang, J. Y.; Liu, L. Q.; Liu, S.; Wu, X. J.; Chu, W. S.; Wu, C. Z.; Xie, Y. Controllable surface reorganization engineering on cobalt phosphide nanowire arrays for efficient alkaline hydrogen evolution reaction. Adv. Mater. 2018, 30, 1703322.Google Scholar
  31. [31]
    Zhang, R.; Wang, X. X.; Yu, S. J.; Wen, T.; Zhu, X. W.; Yang, F. X.; Sun, X. N.; Wang, X. K.; Hu, W. P. Ternary NiCo2Px nanowires as pH-universal electrocatalysts for highly efficient hydrogen evolution reaction. Adv. Mater. 2017, 29, 1605502.Google Scholar
  32. [32]
    Li, Y. J.; Zhang, H. C.; Jiang, M.; Kuang, Y.; Sun, X. M.; Duan, X. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res. 2016, 9, 2251–2259.Google Scholar
  33. [33]
    Pu, Z. H.; Wei, S. Y.; Chen, Z. B.; Mu, S. C. Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. Appl. Catal. B: Environ. 2016, 196, 193–198.Google Scholar
  34. [34]
    Pu, Z. H.; Liu, Q.; Asiri, A. M.; Sun, X. P. Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl. Mater. Interfaces 2014, 6, 21874–21879.Google Scholar
  35. [35]
    Pu, Z. H.; Ya, X.; Amiinu, I. S.; Tu, Z. K.; Liu, X. B.; Li, W. Q.; Mu, S. C. Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. J. Mater. Chem. A 2016, 4, 15327–15332.Google Scholar
  36. [36]
    Wu, L.; Pu, Z. H.; Tu, Z. K.; Amiinu, I. S.; Liu, S. J.; Wang, P. Y.; Mu, S. C. Integrated design and construction of WP/W nanorod array electrodes toward efficient hydrogen evolution reaction. Chem. Eng. J. 2017, 327, 705–712.Google Scholar
  37. [37]
    Yan, Y.; Shi, X. R.; Miao, M.; He, T.; Dong, Z. H.; Zhan, K.; Yang, J. H.; Zhao, B.; Xia, B. Y. Bio-inspired design of hierarchical FeP nanostructure arrays for the hydrogen evolution reaction. Nano Res. 2018, 11, 3537–3547.Google Scholar
  38. [38]
    Zhu, X. H.; Liu, M. J.; Liu, Y.; Chen, R. W.; Nie, Z.; Li, J. H.; Yao, S. Z. Carbon-coated hollow mesoporous FeP microcubes: An efficient and stable electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2016, 4, 8974–8977.Google Scholar
  39. [39]
    Tian, L. H.; Yan, X. D.; Chen, X. B. Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal. 2016, 6, 5441–5448.Google Scholar
  40. [40]
    Li, D. Q.; Liao, Q. Y.; Ren, B. W.; Jin, Q. Y.; Cui, H.; Wang, C. X. A 3D-composite structure of FeP nanorods supported by vertically aligned graphene for the high-performance hydrogen evolution reaction. J. Mater. Chem. A 2017, 5, 11301–11308.Google Scholar
  41. [41]
    Chung, D. Y.; Jun, S. W.; Yoon, G.; Kim, H.; Yoo, J. M.; Lee, K. S.; Kim, T.; Shin, H.; Sinha, A. K.; Kwon, S. G. et al. Large-scale synthesis of carbon-shell-coated FeP nanoparticles for robust hydrogen evolution reaction electrocatalyst. J. Am. Chem. Soc. 2017, 139, 6669–6674.Google Scholar
  42. [42]
    Wang, S. Y.; Zhang, L.; Li, X.; Li, C. L.; Zhang, R. J.; Zhang, Y. J.; Zhu, H. W. Sponge-like nickel phosphide–carbon nanotube hybrid electrodes for efficient hydrogen evolution over a wide pH range. Nano Res. 2017, 10, 415–425.Google Scholar
  43. [43]
    Wang, X. G.; Kolen’ko, Y. V.; Bao, X. Q.; Kovnir, K.; Liu, L. F. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew. Chem., Int. Ed. 2015, 54, 8188–8192.Google Scholar
  44. [44]
    Wang, X. G.; Li, W.; Xiong, D. H.; Petrovykh, D. Y.; Liu, L. F. Bifunctional nickel phosphide nanocatalysts supported on carbon fiber paper for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2016, 26, 4067–4077.Google Scholar
  45. [45]
    Han, A. L.; Jin, S.; Chen, H. L.; Ji, H. X.; Sun, Z. J.; Du, P. W. A robust hydrogen evolution catalyst based on crystalline nickel phosphide nanoflakes on three-dimensional graphene/nickel foam: High performance for electrocatalytic hydrogen production from pH 0–14. J. Mater. Chem. A 2015, 3, 1941–1946.Google Scholar
  46. [46]
    Pan, Y.; Yang, N.; Chen, Y. J.; Lin, Y.; Li, Y. P.; Liu, Y. Q.; Liu, C. G. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. J. Power Sources 2015, 297, 45–52.Google Scholar
  47. [47]
    Cao, X. Y.; Jia, D. D.; Li, D.; Cui, L.; Liu, J. Q. One-step co-electrodeposition of hierarchical radial NixP nanospheres on Ni foam as highly active flexible electrodes for hydrogen evolution reaction and supercapacitor. Chem. Eng. J. 2018, 348, 310–318.Google Scholar
  48. [48]
    Lu, H. Y.; Fan, W.; Huang, Y. P.; Liu, T. X. Lotus root-like porous carbon nanofiber anchored with CoP nanoparticles as all-pH hydrogen evolution electrocatalysts. Nano Res. 2018, 11, 1274–1284.Google Scholar
  49. [49]
    Huang, Z. P.; Chen, Z. Z.; Chen, Z. B.; Lv, C. C.; Humphrey, M. G.; Zhang, C. Cobalt phosphide nanorods as an efficient electrocatalyst for the hydrogen evolution reaction. Nano Energy 2014, 9, 373–382.Google Scholar
  50. [50]
    Huang, J. W.; Li, Y. R.; Xia, Y. F.; Zhu, J. T.; Yi, Q. H.; Wang, H.; Xiong, J.; Sun, Y. H.; Zou, G. F. Flexible cobalt phosphide network electrocatalyst for hydrogen evolution at all pH values. Nano Res. 2017, 10, 1010–1020.Google Scholar
  51. [51]
    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.Google Scholar
  52. [52]
    Yang, H. C.; Zhang, Y. J.; Hu, F.; Wang, Q. B. Urchin-like CoP nanocrystals as hydrogen evolution reaction and oxygen reduction reaction dualelectrocatalyst with superior stability. Nano Lett. 2015, 15, 7616–7620.Google Scholar
  53. [53]
    Pan, Y.; Lin, Y.; Chen, Y. J.; Liu, Y. Q.; Liu, C. G. Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution. J. Mater. Chem. A 2016, 4, 4745–4754.Google Scholar
  54. [54]
    Tang, C.; Zhang, R.; Lu, W. B.; He, L. B.; Jiang, X.; Asiri, A. M.; Sun, X. P. Fe-Doped CoP nanoarray: A monolithic multifunctional catalyst for highly efficient hydrogen generation. Adv. Mater. 2017, 29, 1602441.Google Scholar
  55. [55]
    Ji, Y. Y.; Yang, L.; Ren, X.; Cui, G. W.; Xiong, X. L.; Sun, X. P. Nanoporous CoP3 nanowire array: Acid etching preparation and application as a highly active electrocatalyst for the hydrogen evolution reaction in alkaline solution. ACS Sustainable Chem. Eng. 2018, 6, 11186–11189.Google Scholar
  56. [56]
    Liu, T. T.; Xie, L. S.; Yang, J. H.; Kong, R. M.; Du, G.; Asiri, A. M.; Sun, X. P.; Chen, L. Self-standing CoP nanosheets array: A three-dimensional bifunctional catalyst electrode for overall water splitting in both neutral and alkaline media. ChemElectroChem 2017, 4, 1840–1845.Google Scholar
  57. [57]
    Gu, W. L.; Gan, L. F.; Zhang, X. Y.; Wang, E. K.; Wang, J. Theoretical designing and experimental fabricating unique quadruple multimetallic phosphides with remarkable hydrogen evolution performance. Nano Energy 2017, 34, 421–427.Google Scholar
  58. [58]
    Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718–7725.Google Scholar
  59. [59]
    Liu, S. D.; Sankar, K. V.; Kundu, A.; Ma, M.; Kwon, J. Y.; Jun, S. C. Honeycomb-like interconnected network of nickel phosphide heteronanoparticles with superior electrochemical performance for supercapacitors. ACS Appl. Mater. Interfaces 2017, 9, 21829–21838.Google Scholar
  60. [60]
    Feng, Y.; Yu, X. Y.; Paik, U. Nickel cobalt phosphides quasi-hollow nanocubes as an efficient electrocatalyst for hydrogen evolution in alkaline solution. Chem. Commun. 2016, 52, 1633–1636.Google Scholar
  61. [61]
    Xin, H.; Guo, K.; Li, D.; Yang, H. Q.; Hu, C. W. Production of high-grade diesel from palmitic acid over activated carbon-supported nickel phosphide catalysts. Appl. Catal. B: Environ. 2016, 187, 375–385.Google Scholar
  62. [62]
    Yang, F. L.; Chen, Y. T.; Cheng, G. Z.; Chen, S. L.; Luo, W. Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 2017, 7, 3824–3831.Google Scholar
  63. [63]
    Zhang, F. S.; Wang, J. W.; Luo, J.; Liu, R. R.; Zhang, Z. M.; He, C. T.; Lu, T. B. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting. Chem. Sci. 2018, 9, 1375–1384.Google Scholar
  64. [64]
    Conway, B. E.; Tilak, B. V. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 2002, 47, 3571–3594.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic & Communication DevicesTianjin University of TechnologyTianjinChina

Personalised recommendations