Advertisement

Nano Research

, Volume 12, Issue 2, pp 351–356 | Cite as

Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electrooxidation

  • Xuexue Cui
  • Yaling Li
  • Mingyu Zhao
  • Yunshi Xu
  • Leilei Chen
  • Shuguang Yang
  • Yi WangEmail author
Research Article
  • 79 Downloads

Abstract

Labor-saving preparation of highly active electrocatalysts for alcohols oxidation, especially for the ethylene glycol and glycerol electrooxidation is of great importance for the development of fuel cells. Herein, mesocellular graphene foam (MGF) constructed by ultrathin nanosheets were prepared using lamellar MCM-22 zeolite as template and then ultra-small Pd NPs were facile grew on it via the stabilizer-free synthesis. Detailed characterizations showed that the obtained Pd/MGF had large surface area, hierarchical porous architecture, semi-graphitic framework and dispersed Pd NPs anchoring. Electrochemical measurements demonstrated that Pd/MGF possessed the higher catalytic activity (1.7–2.9 fold higher) and stability for the different alcohols electrooxidation, especially for the ethylene glycol and glycerol electrooxidation in the alkaline solution, than the commercial Pd/C (10 wt.%) catalyst. Reaction kinetics analysis revealed the expanded diffusion-controlled process of Pd/MGF as compared to Pd/C. These findings promised a potential electrocatalyst for DAFC, especially for the direct ethylene glycol or glycerol fuel cells with high energy density.

Keywords

mesocellular graphene foam ultra-small nanoparticles stabilizer-free synthesis alcohol electrooxidation reaction kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 21675032), the Fundamental Research Funds for the Central Universities and DHU Distinguished Young Professor Program.

Supplementary material

12274_2018_2222_MOESM1_ESM.pdf (3.4 mb)
Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electrooxidation

References

  1. [1]
    Badalyan, A.; Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 2016, 535, 406–410.CrossRefGoogle Scholar
  2. [2]
    Wang, Y. J.; Qiao, J. L.; Baker, R.; Zhang, J. J. Alkaline polymer electrolyte membranes for fuel cell applications. Chem. Soc. Rev. 2013, 42, 5768–5787.CrossRefGoogle Scholar
  3. [3]
    Ma, S. Y.; Li, H. H.; Hu, B. C.; Cheng, X.; Fu, Q. Q.; Yu, S. H. Synthesis of low Pt-based quaternary PtPdRuTe nanotubes with optimized incorporation of Pd for enhanced Electrocatalytic activity. J. Am. Chem. Soc. 2017, 139, 5890–5895.CrossRefGoogle Scholar
  4. [4]
    Long, G. F.; Li, X. H.; Wan, K.; Liang, Z. X.; Piao, J. H.; Tsiakaras, P. Pt/CN-doped electrocatalysts: Superior electrocatalytic activity for methanol oxidation reaction and mechanistic insight into interfacial enhancement. Appl. Catal. B: Environ. 2017, 203, 541–548.CrossRefGoogle Scholar
  5. [5]
    Huang, L.; Han, Y. J.; Zhang, X. P.; Fang, Y. X.; Dong, S. J. One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale 2017, 9, 201–207.CrossRefGoogle Scholar
  6. [6]
    Li, S. S.; Hu, Y. Y.; Feng, J. J.; Lv, Z. Y.; Chen, J. R.; Wang, A. J. Rapid room-temperature synthesis of Pd nanodendrites on reduced graphene oxide for catalytic oxidation of ethylene glycol and glycerol. Int. J. Hydrogen Energy 2014, 39, 3730–3738.CrossRefGoogle Scholar
  7. [7]
    Wang, H.; Jiang, B.; Zhao, T. T.; Jiang, K.; Yang, Y. Y.; Zhang, J. W.; Xie, Z. X.; Cai, W. B. Electrocatalysis of ethylene glycol oxidation on bare and bi-modified Pd concave nanocubes in alkaline solution: An interfacial infrared spectroscopic investigation. ACS Catal. 2017, 7, 2033–2041.CrossRefGoogle Scholar
  8. [8]
    Hong, W.; Shang, C. S.; Wang, J.; Wang, E. Bimetallic PdPt nanowire networks with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2015, 8, 2910–2915.CrossRefGoogle Scholar
  9. [9]
    Zalineeva, A.; Serov, A.; Padilla, M.; Martinez, U.; Artyushkova, K.; Baranton, S.; Coutanceau, C.; Atanassov, B. P. Self-supported PdxBi catalysts for the electrooxidation of glycerol in alkaline media. J. Am. Chem. Soc. 2014, 136, 3937–3945.CrossRefGoogle Scholar
  10. [10]
    Simões, M.; Baranton, S.; Coutanceau, C. Electro-oxidation of glycerol at Pd based nano-catalysts for an application in alkaline fuel cells for chemicals and energy cogeneration. Appl. Catal. B: Environ. 2010, 93, 354–362.CrossRefGoogle Scholar
  11. [11]
    Bhunia, K.; Khilari, S.; Pradhan, D. Monodispersed PtPdNi trimetallic nanoparticles-integrated reduced graphene oxide hybrid platform for direct alcohol fuel cell. ACS Sustain. Chem. Eng. 2018, 6, 7769–7778.CrossRefGoogle Scholar
  12. [12]
    Kim, H. J.; Ruqia, B.; Kang, M. S.; Lim, S. B.; Choi, R.; Nam, K. M.; Seo, W. S.; Lee, G.; Choi, S. I. Shape-controlled Pt nanocubes directly grown on carbon supports and their electrocatalytic activity toward methanol oxidation. Sci. Bull. 2017, 62, 943–949.CrossRefGoogle Scholar
  13. [13]
    Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. Porous Pt-Ni-P composite nanotube arrays: Highly electroactive and durable catalysts for methanol electrooxidation. J. Am. Chem. Soc. 2012, 134, 5730–5733.CrossRefGoogle Scholar
  14. [14]
    Xu, H.; Yan, B.; Li, S. M.; Wang, J.; Wang, C. Q.; Guo, J.; Du, Y. K. N-doped graphene supported PtAu/Pt intermetallic core/dendritic shell nanocrystals for efficient electrocatalytic oxidation of formic acid. Chem. Eng. J. 2018, 334, 2638–2646.CrossRefGoogle Scholar
  15. [15]
    Ma, X. Y.; Chen, Y. F.; Wang, H.; Li, Q. X.; Lin, W. F.; Cai, W. B. Electrocatalytic oxidation of ethanol and ethylene glycol on cubic, octahedral and rhombic dodecahedral palladium nanocrystals. Chem. Commun. 2018, 54, 2562–2565.CrossRefGoogle Scholar
  16. [16]
    Xu, H.; Song, P. P.; Yan, B.; Wang, J.; Wang, C. Q.; Shiraishi, Y.; Yang, P.; Du, Y. K. Pt islands on 3D nut-like PtAg nanocrystals for efficient formic acid oxidation electrocatalysis. ChemSusChem 2018, 11, 1056–1062.CrossRefGoogle Scholar
  17. [17]
    Zhang, Y.; Zhang, J. F.; Chen, Z. L.; Liu, Y. W.; Zhang, M. M.; Han, X. P.; Zhong, C.; Hu, W. B.; Deng, Y. D. One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Sci. China Mater. 2018, 61, 697–706.CrossRefGoogle Scholar
  18. [18]
    Li, Z. Y.; Zhou, J.; Tang, L. S.; Fu, X. P.; Wei, H.; Xue, M.; Zhao, Y. L.; Jia, C. J.; Li, X. M.; Chu, H. B. et al. Hydroxyl-rich ceria hydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts. J. Mater. Chem. A 2018, 6, 2318–2326.CrossRefGoogle Scholar
  19. [19]
    Huang, L.; Zhang, X. P.; Wang, Q. Q.; Han, Y, J.; Fang, Y. X.; Dong, S. J. Shape-control of Pt-Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation. J. Am. Chem. Soc. 2018, 140, 1142–1147.CrossRefGoogle Scholar
  20. [20]
    Wang, A. L.; Xu, H.; Feng, J. X.; Ding, L. X.; Tong, Y. X.; Li, G. R. Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J. Am. Chem. Soc. 2013, 135, 10703–10709.CrossRefGoogle Scholar
  21. [21]
    Zhang, X.; Zhu, J. X.; Tiwary, C. S.; Ma, Z. Y.; Huang, H. J.; Zhang, J. F.; Lu, Z. Y.; Huang, W.; Wu, Y. P. Palladium nanoparticles supported on nitrogen and sulfur dual-doped graphene as highly active electrocatalysts for formic acid and methanol oxidation. ACS Appl. Mater. Interfaces 2016, 8, 10858–10865.CrossRefGoogle Scholar
  22. [22]
    Nandan R.; Nanda, K. K. A unique approach to designing resilient bifunctional nano-electrocatalysts based on ultrafine bimetallic nanoparticles dispersed in carbon nanospheres. J. Mater. Chem. A 2017, 5, 10544–10553.CrossRefGoogle Scholar
  23. [23]
    Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J. Am. Chem. Soc. 2011, 133, 3693–3695.CrossRefGoogle Scholar
  24. [24]
    Xu, H.; Yan, B.; Zhang, K.; Wang, J.; Li, S. M.; Wang, C. Q.; Shiraishi, Y.; Du, Y. K.; Yang, P. Ultrasonic-assisted synthesis of N-doped graphenesupported binary PdAu nanoflowers for enhanced electro-oxidation of ethylene glycol and glycerol. Electrochim. Acta 2017, 245, 227–236.CrossRefGoogle Scholar
  25. [25]
    Ahmed, M. S.; Park, D.; Jeon, S. Ultrasmall PdmMn1–mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media. J. Power Sources 2016, 308, 180–188.CrossRefGoogle Scholar
  26. [26]
    Jia, N.; Shi, Y. R.; Zhang, S. X.; Chen, X. B.; Chen, P.; An, Z. W. Carbon nanobowls supported ultrafine palladium nanocrystals: A highly active electrocatalyst for the formic acid oxidation. Int. J. Hydrogen Energy 2017, 42, 8255–8263.CrossRefGoogle Scholar
  27. [27]
    Shenashen, M. A.; Hassen, D.; El-Safty, S. A.; Isago, H.; Elmarakbi, A.; Yamaguchi, H. Axially oriented tubercle vein and X-crossed sheet of N-Co3O4@C hierarchical mesoarchitectures as potential heterogeneous catalysts for methanol oxidation reaction. Chem. Eng. J. 2017, 313, 83–98.CrossRefGoogle Scholar
  28. [28]
    Li, S. P.; Lai, J. P.; Luque, R.; Xu, G. B. Designed multimetallic Pd nanosponges with enhanced electrocatalytic activity for ethylene glycol and glycerol oxidation. Energy Environ. Sci. 2016, 9, 3097–3102.CrossRefGoogle Scholar
  29. [29]
    Wang, W.; Lv, F.; Lei, B.; Wan, S.; Luo, M. C.; Guo S. J. Tuning nanowires and nanotubes for efficient fuel-cell electrocatalysis. Adv. Mater. 2016, 28, 10117–10141.CrossRefGoogle Scholar
  30. [30]
    Xi, Z.; Erdosy, D. P.; Mendoza-Garcia, A.; Duchesne, P. N.; Li, J. R.; Muzzio, M.; Li, Q.; Zhang, P.; Sun, S. H. Pd nanoparticles coupled to WO2.72 nanorods for enhanced electrochemical oxidation of formic acid. Nano Lett. 2017, 17, 2727–2731.CrossRefGoogle Scholar
  31. [31]
    Martins, C. A.; Fernández, P. S.; de Lima, F.; Troiani, H. E.; Martins, M. E.; Arenillas, A.; Maia, G.; Camara, G. A. Remarkable electrochemical stability of one-step synthesized Pd nanoparticles supported on graphene and multi-walled carbon nanotubes. Nano Energy 2014, 9, 142–151.CrossRefGoogle Scholar
  32. [32]
    Begum, H.; Ahmed, M. S.; Jeon, S. Highly efficient dual active palladium nanonetwork electrocatalyst for ethanol oxidation and hydrogen evolution. ACS Appl. Mater. Interfaces 2017, 9, 39303–39311.CrossRefGoogle Scholar
  33. [33]
    Tang, J. X.; Chen, Q. S.; You, L. X.; Liao, H. J.; Sun, S. G.; Zhou, S. G.; Xu, Z. N.; Chen, Y. M.; Guo, G. C. Screw-like PdPt nanowires as highly efficient electrocatalysts for methanol and ethylene glycol oxidation. J. Mater. Chem. A 2018, 6, 2327–2336.CrossRefGoogle Scholar
  34. [34]
    Fashedemi, O. O.; Miller, H. A.; Marchionni, A.; Vizza, F.; Ozoemen, K. I. Electro-oxidation of ethylene glycol and glycerol at palladium-decorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: Functionalized MWCNT supports and impact on product selectivity. J. Mater. Chem. A 2015, 3, 7145–7156.CrossRefGoogle Scholar
  35. [35]
    Li, Z. H.; Ye, L. T.; Wang, Y. L.; Xu, S. H.; Lei, F. L.; Lin, S. Visible light assisted electro-photo synergistic catalysis of heterostructured Pd-Ag NPs/graphene for methanol oxidation. RSC Adv. 2016, 6, 79533–79541.CrossRefGoogle Scholar
  36. [36]
    Yang, Y.; Wang, W.; Liu, Y. Q.; Wang, F. X.; Zhang, Z.; Lei, Z. Q. Carbon supported heterostructured Pd-Ag nanoparticle: Highly active electrocatalyst for ethylene glycol oxidation. Int. J. Hydrogen Energy 2015, 40, 2225–2230.CrossRefGoogle Scholar
  37. [37]
    Li, L. Z.; Chen, M. X.; Huang, G. B.; Yang, N.; Zhang, L.; Wang, H.; Liu, Y.; Wang, W.; Gao, J. P. A green method to prepare Pd-Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation. J. Power Sources 2014, 263, 13–21.CrossRefGoogle Scholar
  38. [38]
    Yang, Y.; Wang, W.; Liu, Y. Q.; Wang, F. X.; Chai, D.; Lei, Z. Q. Pd nanoparticles supported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation. Electrochim. Acta 2015, 154, 1–8.CrossRefGoogle Scholar
  39. [39]
    Asset, T.; Serov, A.; Padilla, M.; Roy, A. J.; Matanovic, I.; Chatenet, M.; Maillard, F.; Atanassov, P. Design of Pd-Pb catalysts for glycerol and ethylene glycol electrooxidation in alkaline medium. Electrocatalysis 2018, 9, 480–485.CrossRefGoogle Scholar
  40. [40]
    Wang, H. B.; Thia, L.; Li, N.; Ge, X. M.; Liu, Z. L.; Wang, X. Pd nanoparticles on carbon nitride-graphene for the selective electro-oxidation of glycerol in alkaline solution. ACS Catal. 2015, 5, 3174–3180.CrossRefGoogle Scholar
  41. [41]
    Chai, D.; Wang, W.; Dong, W. K.; Kang, Y. M.; Dong, Y. J.; Lei, Z. Q. Facile synthesis of a ternary Pd-P-B nanoalloy: Enhanced catalytic performance towards ethylene glycol electrooxidation. Appl. Catal. A: Gen. 2016, 525, 1–8.CrossRefGoogle Scholar
  42. [42]
    Carvalho, L. L.; Colmati, F.; Tanaka, A. A. Nickel-palladium electrocatalysts for methanol, ethanol, and glycerol oxidation reactions. Int. J. Hydrogen Energy 2017, 42, 16118–16126.CrossRefGoogle Scholar
  43. [43]
    Bambagioni, V.; Bianchini, C.; Marchionni, A.; Filippi, J.; Vizza, F.; Teddy, J.; Serp, P.; Zhiani, M. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J. Power Sources 2009, 190, 241–251.CrossRefGoogle Scholar
  44. [44]
    Xu, H.; Song, P. P.; Fernandez, C.; Wang, J.; Zhu, M. S.; Shiraishi, Y.; Du, Y. K. Sophisticated construction of binary PdPb alloy nanocubes as robust electrocatalysts toward ethylene glycol and glycerol oxidation. ACS Appl. Mater. Interfaces 2018, 10, 12659–12665.CrossRefGoogle Scholar
  45. [45]
    Li, H.; Zhang, Y. Y.; Wan, Q. J.; Li, Y. W.; Yang, N. J. Expanded graphite and carbon nanotube supported palladium nanoparticles for electrocatalytic oxidation of liquid fuels. Carbon 2018, 131, 111–119.CrossRefGoogle Scholar
  46. [46]
    Song, P.; Feng, J. J.; Guo, F. Y.; Wang, A. J. Simple polyol synthesis of porous coral-like palladium-silver alloy nanostructures with enhanced electrocatalytic activity for glycerol oxidation reaction. J. Mater. Chem. A 2015, 3, 15920–15926.CrossRefGoogle Scholar
  47. [47]
    Yan, S. H.; Zhang, S. C.; Lin, Y.; Liu, G. R. Electrocatalytic performance of gold nanoparticles supported on activated carbon for methanol oxidation in alkaline solution. J. Phys. Chem. C 2011, 115, 6986–6993.CrossRefGoogle Scholar
  48. [48]
    Yang, Y.; Jin, L.; Liu, B.; Kerns, P.; He, J. Direct growth of ultrasmall bimetallic AuPd nanoparticles supported on nitrided carbon towards ethanol electrooxidation. Electrochim. Acta 2018, 269, 441–451.CrossRefGoogle Scholar
  49. [49]
    Dector, A.; Cuevas-Muñiz, F. M.; Guerra-Balcázar, M.; Godínez, L. A.; Ledesma-García, J.; Arriaga, L. G. Glycerol oxidation in a microfluidic fuel cell using Pd/C and Pd/MWCNT anodes electrodes. Int. J. Hydrogen Energy 2013, 38, 12617–12622.CrossRefGoogle Scholar
  50. [50]
    Simpson, D. E.; Juda, K. E.; Roy, D. Electroanalytical assessment of the function of nickel in alkaline electrocatalysis of glycerol. Electrocatalysis 2018, 9, 86–101.CrossRefGoogle Scholar
  51. [51]
    Wu, Y. M.; Han, S. H.; Huang, Y.; Shi, Y. M.; Zhang, B. Boosting ethanol electrooxidation via photothermal effect over palladium/reduced graphene oxide. J. Mater. Chem. A, 2018, 6, 18426–18429.CrossRefGoogle Scholar
  52. [52]
    Ren, H. Y.; Tang, M.; Guan, B. L.; Wang, K. X.; Yang, J. W.; Wang, F. F.; Wang, M. Z.; Shan, J. Y.; Chen, Z. L.; Wei, D. et al. Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv. Mater. 2017, 29, 1702590.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xuexue Cui
    • 1
  • Yaling Li
    • 1
  • Mingyu Zhao
    • 1
  • Yunshi Xu
    • 1
  • Leilei Chen
    • 1
    • 2
  • Shuguang Yang
    • 1
  • Yi Wang
    • 1
    • 2
    Email author
  1. 1.Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and EngineeringDonghua UniversityShanghaiChina
  2. 2.College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina

Personalised recommendations