Advertisement

Nano Research

, Volume 12, Issue 2, pp 345–349 | Cite as

Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes

  • Zhao Cai
  • Yusheng Zhang
  • Yuxin Zhao
  • Yueshen Wu
  • Wenwen Xu
  • Xuemei Wen
  • Yang Zhong
  • Ying Zhang
  • Wen Liu
  • Hailiang Wang
  • Yun Kuang
  • Xiaoming Sun
Research Article

Abstract

Electrocatalytic CO2 reduction is a promising way to mitigate the urgent energy and environmental issues, but how to increase the selectivity for desired product among multiple competing reaction pathways remains a bottleneck. Here, we demonstrate that engineering the gas–liquid–solid contact interface on the electrode surface could tailor the selectivity of CO2 reduction and meanwhile suppress H2 production through regulated reaction kinetics. Specifically, polytetrafluoroethylene (PTFE) was utilized to modify a Cu nanoarray electrode as an example, which is able to change the electrode surface from aerophobic to aerophilic state. The enriched nano-tunnels of the Cu nanoarray electrode can facilitate CO2 transportation and pin gaseous products on the electrode surface. The latter is believed to be the reason that boosts the Faradaic efficiency of liquid products by 67% and limits the H2 production to less than half of before. This interface engineering strategy also lowered H2O (proton) affinity, therefore promoting CO and HCOOH production. Engineering the electrode contact interface controls the reaction kinetics and the selectivity of products, which should be inspiring for other electrochemical reactions.

Keywords

CO2 reduction selectivity copper contact interface reaction kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China, the National Key Research and Development Program of China (Nos. 2016YFC0801302 and 2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University, the Fundamental Research Funds for the Central Universities, and the longterm subsidy mechanism from the Ministry of Finance and the Ministry of Education of PRC. Y. X. Z. thanks the National Natural Science Foundation of China (No. 61701543) for the financial support.

Supplementary material

12274_2018_2221_MOESM1_ESM.pdf (3.1 mb)
Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes

References

  1. [1]
    Schreier, M.; Héroguel, F.; Steier, L.; Ahmad, S.; Luterbacher, J. S.; Mayer, M. T.; Luo, J. S.; Grätzel, M. Solar conversion of CO2 to CO using earth-abundant electrocatalysts prepared by atomic layer modification of CuO. Nat. Energy 2017, 2, 17087.CrossRefGoogle Scholar
  2. [2]
    Lu, Q.; Rosen, J.; Zhou, Y.; Hutchings, G. S.; Kimmel, Y. C.; Chen, J. G.; Jiao, F. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat. Commun. 2014, 5, 3242.CrossRefGoogle Scholar
  3. [3]
    Qiao, J. L.; Liu, Y. Y.; Hong, F.; Zhang, J. J. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem. Soc. Rev. 2014, 43, 631–675.CrossRefGoogle Scholar
  4. [4]
    Lei, F. C.; Liu, W.; Sun, Y. F.; Xu, J. Q.; Liu, K. T.; Liang, L.; Yao, T.; Pan, B. C.; Wei, S. Q.; Xie, Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 2016, 7, 12697.CrossRefGoogle Scholar
  5. [5]
    Gao, S.; Sun, Z. T.; Liu, W.; Jiao, X. C.; Zu, X. L.; Hu, Q. T.; Sun, Y. F.; Yao, T.; Zhang, W. H.; Wei, S. Q. et al. Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction. Nat. Commun. 2017, 8, 14503.CrossRefGoogle Scholar
  6. [6]
    Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.CrossRefGoogle Scholar
  7. [7]
    Li, F. W.; Chen, L.; Knowles, G. P.; MacFarlane, D. R.; Zhang, J. Hierarchical mesoporous SnO2 nanosheets on carbon cloth: A robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew. Chem., Int. Ed. 2017, 56, 505–509.CrossRefGoogle Scholar
  8. [8]
    Jiang, K.; Wang, H.; Cai, W. B.; Wang, H. T. Li electrochemical tuning of metal oxide for highly selective CO2 reduction. ACS Nano 2017, 11, 6451–6458.CrossRefGoogle Scholar
  9. [9]
    Zhang, S.; Kang, P.; Meyer, T. J. Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J. Am. Chem. Soc. 2014, 136, 1734–1737.CrossRefGoogle Scholar
  10. [10]
    Kim, C.; Jeon, H. S.; Eom, T.; Jee, M. S.; Kim, H.; Friend, C. M.; Min, B. K.; Hwang, Y. J. Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 2015, 137, 13844–13850.CrossRefGoogle Scholar
  11. [11]
    Liu, S. B.; Tao, H. B.; Zeng, L.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Shape-dependent electrocatalytic reduction of CO2 to CO on triangular silver nanoplates. J. Am. Chem. Soc. 2017, 139, 2160–2163.CrossRefGoogle Scholar
  12. [12]
    Luc, W.; Collins, C.; Wang, S. W.; Xin, H. L.; He, K.; Kang, Y. J.; Jiao, F. Ag-Sn bimetallic catalyst with a core-shell structure for CO2 reduction. J. Am. Chem. Soc. 2017, 139, 1885–1893.CrossRefGoogle Scholar
  13. [13]
    Gao, D. F.; Zhang, Y.; Zhou, Z. W.; Cai, F.; Zhao, X. F.; Huang, W. G.; Li, Y. S.; Zhu, J. F.; Liu, P.; Yang, F. et al. Enhancing CO2 electroreduction with the metal-oxide interface. J. Am. Chem. Soc. 2017, 139, 5652–5655.CrossRefGoogle Scholar
  14. [14]
    Kumar, B.; Atla, V.; Brian, J. P.; Kumari, S.; Nguyen, T. Q.; Sunkara, M.; Spurgeon, J. M. Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into- HCOOH conversion. Angew. Chem., Int. Ed. 2017, 56, 3645–3649.CrossRefGoogle Scholar
  15. [15]
    Huo, S. J.; Weng, Z.; Wu, Z. S.; Zhong, Y. R.; Wu, Y. S.; Fang, J. H.; Wang, H. L. Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2017, 9, 28519–28526.CrossRefGoogle Scholar
  16. [16]
    Varela, A. S.; Ju, W.; Reier, T.; Strasser, P. Tuning the catalytic activity and selectivity of Cu for CO2 electroreduction in the presence of halides. ACS Catal. 2016, 6, 2136–2144.CrossRefGoogle Scholar
  17. [17]
    Hahn, C.; Hatsukade, T.; Kim, Y. G.; Vailionis, A.; Baricuatro, J. H.; Higgins, D. C.; Nitopi, S. A.; Soriaga, M. P.; Jaramillo, T. F. Engineering Cu surfaces for the electrocatalytic conversion of CO2: Controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl. Acad. Sci. USA 2017, 114, 5918–5923.CrossRefGoogle Scholar
  18. [18]
    Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 13135–13139.CrossRefGoogle Scholar
  19. [19]
    Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.CrossRefGoogle Scholar
  20. [20]
    Li, Q.; Fu, J. J.; Zhu, W. L.; Chen, Z. Z.; Shen, B.; Wu, L. H.; Xi, Z.; Wang, T. Y.; Lu, G.; Zhu, J. J. et al. Tuning Sn-catalysis for electrochemical reduction of CO2 to CO via the core/shell Cu/SnO2 structure. J. Am. Chem. Soc. 2017, 139, 4290–4293.CrossRefGoogle Scholar
  21. [21]
    Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y. C.; Yang, P. D. Structuresensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 2017, 17, 1312–1317.CrossRefGoogle Scholar
  22. [22]
    Dai, L.; Qin, Q.; Wang, P.; Zhao, X. J.; Hu, C. Y.; Liu, P. X.; Qin, R. X.; Chen, M.; Ou, D. H.; Xu, C. F. et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Sci. Adv. 2017, 3, e1701069.CrossRefGoogle Scholar
  23. [23]
    Ma, S. C.; Sadakiyo, M.; Heima, M.; Luo, R.; Haasch, R. T.; Gold, J. I.; Yamauchi, M.; Kenis, P. J. A. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 2016, 139, 47–50.CrossRefGoogle Scholar
  24. [24]
    Sarfraz, S.; Garcia-Esparza, A. T.; Jedidi, A.; Cavallo, L.; Takanabe, K. Cu-Sn bimetallic catalyst for selective aqueous electroreduction of CO2 to CO. ACS Catal. 2016, 6, 2842–2851.CrossRefGoogle Scholar
  25. [25]
    Li, C. W.; Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 2012, 134, 7231–7234.CrossRefGoogle Scholar
  26. [26]
    Verdaguer-Casadevall, A.; Li, C. W.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 2015, 137, 9808–9811.CrossRefGoogle Scholar
  27. [27]
    Li, P. S.; Xie, Q. X.; Zheng, L. R.; Feng, G.; Li, Y. J.; Cai, Z.; Bi, Y. M.; Li, Y. P.; Kuang, Y.; Sun, X. M. et al. Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Res. 2017, 10, 2988–2997.CrossRefGoogle Scholar
  28. [28]
    Weng, Z.; Wu, Y. S.; Wang, M. Y.; Jiang, J. B.; Yang, K.; Huo, S. J.; Wang, X. F.; Ma, Q.; Brudvig, G. W.; Batista, V. S. et al. Active sites of coppercomplex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 2018, 9, 415.CrossRefGoogle Scholar
  29. [29]
    Cai, Z.; Zhou, D. J.; Wang, M. Y.; Bak, S. M.; Wu, Y. S.; Wu, Z. S.; Tian, Y.; Xiong, X. Y.; Li, Y. P.; Liu, W. et al. Introducing Fe2+ into nickel-iron layered double hydroxide: Local structure modulated water oxidation activity. Angew. Chem., Int. Ed. 2018, 130, 9536–9540.CrossRefGoogle Scholar
  30. [30]
    Zhou, D. J.; Cai, Z.; Lei, X. D.; Tian, W. L.; Bi, Y. M.; Jia, Y.; Han, N. N.; Gao, T. F.; Zhang, Q.; Kuang, Y. et al. NiCoFe-layered double hydroxides/N-doped graphene oxide array colloid composite as an efficient bifunctional catalyst for oxygen electrocatalytic reactions. Adv. Energy Mater. 2018, 8, 1701905.CrossRefGoogle Scholar
  31. [31]
    Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.CrossRefGoogle Scholar
  32. [32]
    Cai, Z.; Bi, Y. M.; Hu, E. Y.; Liu, W.; Dwarica, N.; Tian, Y.; Li, X. L.; Kuang, Y.; Li, Y. P.; Yang, X. Q. et al. Single-crystalline ultrathin Co3O4 nanosheets with massive vacancy defects for enhanced electrocatalysis. Adv. Energy Mater. 2018, 8, 1701694.CrossRefGoogle Scholar
  33. [33]
    Zhou, Y.; Silva, J. L.; Woods, J. M.; Pondick, J. V.; Feng, Q. L.; Liang, Z. X.; Liu, W.; Lin, L.; Deng, B. C.; Brena, B. et al. Revealing the contribution of individual factors to hydrogen evolution reaction catalytic activity. Adv. Mater. 2018, 30, 1706076.CrossRefGoogle Scholar
  34. [34]
    Ma, M.; Djanashvili, K.; Smith, W. A. Controllable hydrocarbon formation from the electrochemical reduction of CO2 over Cu nanowire arrays. Angew. Chem., Int. Ed. 2016, 55, 6680–6684.CrossRefGoogle Scholar
  35. [35]
    Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.CrossRefGoogle Scholar
  36. [36]
    Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.CrossRefGoogle Scholar
  37. [37]
    Tian, X. L.; Verho, T.; Ras, R. H. A. Moving superhydrophobic surfaces toward real-world applications. Science 2016, 352, 142–143.CrossRefGoogle Scholar
  38. [38]
    Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.CrossRefGoogle Scholar
  39. [39]
    Zhu, S. Q.; Jiang, B.; Cai, W. B.; Shao, M. H. Direct observation on reaction intermediates and the role of bicarbonate anions in CO2 electrochemical reduction reaction on Cu surfaces. J. Am. Chem. Soc. 2017, 139, 15664–15667.CrossRefGoogle Scholar
  40. [40]
    Schouten, K. J. P.; Kwon, Y.; Van der Ham, C. J. M.; Qin, Z.; Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2011, 2, 1902–1909.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhao Cai
    • 1
  • Yusheng Zhang
    • 1
  • Yuxin Zhao
    • 4
  • Yueshen Wu
    • 2
  • Wenwen Xu
    • 1
    • 2
  • Xuemei Wen
    • 1
  • Yang Zhong
    • 1
    • 3
  • Ying Zhang
    • 5
  • Wen Liu
    • 1
  • Hailiang Wang
    • 2
  • Yun Kuang
    • 1
  • Xiaoming Sun
    • 1
    • 3
  1. 1.State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  2. 2.Department of Chemistry and Energy Sciences InstituteYale UniversityWest HavenUSA
  3. 3.College of EnergyBeijing University of Chemical TechnologyBeijingChina
  4. 4.State Key Laboratory of Safety and Control for ChemicalsSINOPEC Research Institute of Safety EngineeringQingdaoChina
  5. 5.School of ChemistryMonash UniversityClaytonAustralia

Personalised recommendations