Nano Research

, Volume 12, Issue 2, pp 339–344 | Cite as

High-performance asymmetric electrodes photodiode based on Sb/WSe2 heterostructure

  • Xiao Liu
  • Guangzhuang Sun
  • Peng Chen
  • Junchi Liu
  • Zhengwei Zhang
  • Jia Li
  • Huifang Ma
  • Bei Zhao
  • Ruixia Wu
  • Weiqi Dang
  • Xiangdong Yang
  • Chen Dai
  • Xuwan Tang
  • Zhuojun Chen
  • Lili Miao
  • Xingqiang Liu
  • Bo LiEmail author
  • Yuan Liu
  • Xidong DuanEmail author
Research Article


Two-dimensional (2D) van der Waals (vdWs) metal-semiconductor heterostructures with atomically sharp interface and matched work functions have recently attracted great attention due to their unique electronic and optoelectronic properties. Here we report the vapor phase epitaxial growth of large-scale vertical Sb/WSe2 metal-semiconductor vdWs heterostructures with uniform stacking orientation. Compared with the growth on SiO2/Si substrate, the thickness of Sb nanosheet on WSe2 can be reduced effectively to monolayer. We construct Sb-WSe2-Au asymmetric electrodes photodiode based on the Sb/WSe2 heterostructures. Electrical transport measurements indicate that the photodiode show obvious rectifying effect. Optoelectronic characterizations show prominent photoresponse with a high photoresposivity of 364 mA/W, a fast response time of less than 8 ms, a large open-circuit voltage of 0.27 V and a maximum electrical power output of 0.11 nW. The direct growth of high-quality metal-semiconductor vdWs heterostructures may open up new realms in 2D functional electronics and optoelectronics.


two-dimensional asymmetric electrode photodiode vdW heterostructure optoelectronics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge support from the National Natural Science Foundation of China (Nos. 61804050 and 51872086), the Double First-Class Initiative of Hunan University (No. 531109100004), and the Fundamental Research Funds of the Central Universities (Nos. 531107051078 and 531107051055).


  1. [1]
    Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.CrossRefGoogle Scholar
  2. [2]
    Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the schottky-mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.CrossRefGoogle Scholar
  3. [3]
    Chen, P.; Zhang, Z. W.; Duan, X. D.; Duan, X. F. Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices. Chem. Soc. Rev. 2018, 47, 3129–3151.CrossRefGoogle Scholar
  4. [4]
    Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.CrossRefGoogle Scholar
  5. [5]
    Li, B.; Xing, T.; Zhong, M. Z.; Huang, L.; Lei, N.; Zhang, J.; Li, J. B.; Wei, Z. M. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 2017, 8, 1958.CrossRefGoogle Scholar
  6. [6]
    Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.CrossRefGoogle Scholar
  7. [7]
    Cui, Y.; Li, B.; Li, J. B.; Wei, Z. M. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci. China Phys. Mech. Astron. 2017, 61, 016801.CrossRefGoogle Scholar
  8. [8]
    Duan, X. D.; Wang, C.; Fan, Z.; Hao, G. L.; Kou, L. Z.; Halim, U.; Li, H. L.; Wu, X. P.; Wang, Y. C.; Jiang, J. H. et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 2016, 16, 264–269.CrossRefGoogle Scholar
  9. [9]
    Li, B.; Huang, L.; Zhong, M. Z.; Huo, N. J.; Li, Y. T.; Yang, S. X.; Fan, C.; Yang, J. H.; Hu, W. P.; Wei, Z. M. et al. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets. ACS Nano 2015, 9, 1257–1262.CrossRefGoogle Scholar
  10. [10]
    Wang, J.; Xie, F.; Cao, X. H.; An, S. C.; Zhou, W. X.; Tang, L. M.; Chen, K. Q. Excellent thermoelectric properties in monolayer WSe2 nanoribbons due to ultralow phonon thermal conductivity. Sci. Rep. 2017, 7, 41418.CrossRefGoogle Scholar
  11. [11]
    Li, B.; Huang, L.; Zhao, G. Y.; Wei, Z. M.; Dong, H. L.; Hu, W. P.; Wang, L. W.; Li, J. B. Large-size 2D β-Cu2S nanosheets with giant phase transition temperature lowering (120 K) synthesized by a novel method of supercooling chemical-vapor-deposition. Adv. Mater. 2016, 28, 8271–8276.CrossRefGoogle Scholar
  12. [12]
    Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.CrossRefGoogle Scholar
  13. [13]
    Xue, X. X.; Feng, Y. X.; Liao, L.; Chen, Q. J.; Wang, D.; Tang, L. M.; Chen, K. Q. Strain tuning of electronic properties of various dimension elemental tellurium with broken screw symmetry. J. Phys. Condens. Mater. 2018, 30, 125001.CrossRefGoogle Scholar
  14. [14]
    Zou, J.; Tang, L. M.; Chen, K. Q.; Feng, Y. X. Contrasting properties of hydrogenated and protonated single-layer h-BN from first-principles. J. Phys. Condens. Mater. 2018, 30, 065001.CrossRefGoogle Scholar
  15. [15]
    Wang, Q. S.; Wen, Y.; Cai, K. M.; Cheng, R. Q.; Yin, L.; Zhang, Y.; Li, J.; Wang, Z. X.; Wang, F.; Wang, F. M. et al. Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures. Sci. Adv. 2018, 4, eaap7916.CrossRefGoogle Scholar
  16. [16]
    Wang, F.; Wang, Z. X.; Yin, L.; Cheng, R. Q.; Wang, J. J.; Wen, Y.; Shifa, T. A.; Wang, F. M.; Zhang, Y.; Zhan, X. Y. et al. 2D library beyond graphene and transition metal dichalcogenides: A focus on photodetection. Chem. Soc. Rev. 2018, 47, 6296–6341.CrossRefGoogle Scholar
  17. [17]
    Cheng, R. Q.; Wang, F.; Yin, L.; Wang, Z. X.; Wen, Y.; Shifa, T. A.; He, J. High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nat. Electron. 2018, 1, 356–361.CrossRefGoogle Scholar
  18. [18]
    Das, T.; Sharma, B. K.; Katiyar, A. K.; Ahn, J. H. Graphene-based flexible and wearable electronics. J. Semicond. 2018, 39, 011007.CrossRefGoogle Scholar
  19. [19]
    Huo, N. J.; Yang, Y. J.; Li, J. B. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond. 2017, 38, 031002.CrossRefGoogle Scholar
  20. [20]
    Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 2014, 8, 923–930.CrossRefGoogle Scholar
  21. [21]
    Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Lett. 2014, 14, 5590–5597.CrossRefGoogle Scholar
  22. [22]
    Li, Y. M.; Li, J.; Shi, L. K.; Zhang, D.; Yang, W.; Chang, K. Light-induced exciton spin Hall effect in van der Waals heterostructures. Phys. Rev. Lett. 2015, 115, 166804.CrossRefGoogle Scholar
  23. [23]
    Ares, P.; Aguilar-Galindo, F.; Rodríguez-San-Miguel, D.; Aldave, D. A.; Díaz-Tendero, S.; Alcamí, M.; Martín, F.; Gómez-Herrero, J.; Zamora, F. Mechanical isolation of highly stable antimonene under ambient conditions. Adv. Mater. 2016, 28, 6332–6336.CrossRefGoogle Scholar
  24. [24]
    Zhang, S. L.; Xie, M. Q.; Li, F. Y.; Yan, Z.; Li, Y. F.; Kan, E. J.; Liu, W.; Chen, Z. F.; Zeng, H. B. Semiconducting group 15 monolayers: A broad range of band gaps and high carrier mobilities. Angew. Chem., Int. Ed. 2016, 128, 1698–1701.CrossRefGoogle Scholar
  25. [25]
    Wang, G. X.; Pandey, R.; Karna, S. P. Atomically thin group v elemental films: Theoretical investigations of antimonene allotropes. ACS Appl. Mater. Interfaces 2015, 7, 11490–11496.CrossRefGoogle Scholar
  26. [26]
    Lee, J.; Tian, W. C.; Wang, W. L.; Yao, D. X. Two-dimensional pnictogen honeycomb lattice: Structure, on-site spin-orbit coupling and spin polarization. Sci. Rep. 2015, 5, 11512.CrossRefGoogle Scholar
  27. [27]
    Ji, J. P.; Song, X. F.; Liu, J. Z.; Yan, Z.; Huo, C. X.; Zhang, S. L.; Su, M.; Liao, L.; Wang, W. H.; Ni, Z. H. et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy. Nat. Commun. 2016, 7, 13352.CrossRefGoogle Scholar
  28. [28]
    Wu, X.; Shao, Y.; Liu, H.; Feng, Z. L.; Wang, Y. L.; Sun, J. T.; Liu, C.; Wang, J. O.; Liu, Z. L.; Zhu, S. Y. et al. Epitaxial growth and air-stability of monolayer antimonene on PdTe2. Adv. Mater. 2017, 29, 1605407.CrossRefGoogle Scholar
  29. [29]
    Shao, Y.; Liu, Z. L.; Cheng, C.; Wu, X.; Liu, H.; Liu, C.; Wang, J. O.; Zhu, S. Y.; Wang, Y. Q.; Shi, D. X. et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett. 2018, 18, 2133–2139.CrossRefGoogle Scholar
  30. [30]
    Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.CrossRefGoogle Scholar
  31. [31]
    Yang, H. H.; Gao, F.; Dai, M. J.; Jia, D. C.; Zhou, Y.; Hu, P. G. Recent advances in preparation, properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond. 2017, 38, 031004.CrossRefGoogle Scholar
  32. [32]
    Wei, Z. M.; Li, B.; Xia, C. X.; Cui, Y.; He, J.; Xia, J. B.; Li, J. B. Various structures of 2D transition-metal dichalcogenides and their applications. Small Methods 2018, DOI: 10.1002/smtd.201800094.Google Scholar
  33. [33]
    Yang, T. F.; Zheng, B. Y.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X. H.; Qi, Z. Y.; Liu, H. J.; Feng, Y. X. et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions. Nat. Commun. 2017, 8, 1906.CrossRefGoogle Scholar
  34. [34]
    Li, B.; Huang, L.; Zhong, M. Z.; Li, Y.; Wang, Y.; Li, J. B.; Wei, Z. M. Direct vapor phase growth and optoelectronic application of large band offset SnS2/MoS2 vertical bilayer heterostructures with high lattice mismatch. Adv. Electron. Mater. 2016, 2, 1600298.CrossRefGoogle Scholar
  35. [35]
    Ning, F.; Wang, D.; Feng, Y. X.; Tang, L. M.; Zhang, Y.; Chen, K. Q. Strong interfacial interaction and enhanced optical absorption in graphene/ InAs and MoS2/InAs heterostructures. J. Mater. Chem. C 2017, 5, 9429–9438.CrossRefGoogle Scholar
  36. [36]
    Li, Q. Z.; Tang, L. P.; Zhang, C. X.; Wang, D.; Chen, Q. J.; Feng, Y. X.; Tang, L. M.; Chen, K. Q. Seeking the dirac cones in the MoS2/WSe2 van der Waals heterostructure. Appl. Phys. Lett. 2017, 111, 171602.CrossRefGoogle Scholar
  37. [37]
    Liu, F. J.; Wang, J. W.; Wang, L.; Cai, X. Y.; Jiang, C.; Wang, G. T. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond. 2017, 38, 034002.CrossRefGoogle Scholar
  38. [38]
    Wang, Y.; Huang, L.; Wei, Z. M. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond. 2017, 38, 034001.CrossRefGoogle Scholar
  39. [39]
    Huang, C.; Jin, Y. B.; Wang, W. Y.; Tang, L.; Song, C. Y.; Xiu, F. X. Manganese and chromium doping in atomically thin MoS2. J. Semicond. 2017, 38, 033004.CrossRefGoogle Scholar
  40. [40]
    Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.CrossRefGoogle Scholar
  41. [41]
    Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.CrossRefGoogle Scholar
  42. [42]
    Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.CrossRefGoogle Scholar
  43. [43]
    Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.CrossRefGoogle Scholar
  44. [44]
    Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.CrossRefGoogle Scholar
  45. [45]
    Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.CrossRefGoogle Scholar
  46. [46]
    Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.CrossRefGoogle Scholar
  47. [47]
    Zou, X. M.; Huang, C. W.; Wang, L. F.; Yin, L. J.; Li, W. Q.; Wang, J. L.; Wu, B.; Liu, Y. Q.; Yao, Q.; Jiang, C. Z. et al. Dielectric engineering of a boron nitride/hafnium oxide heterostructure for high-performance 2D field effect transistors. Adv. Mater. 2016, 28, 2062–2069.CrossRefGoogle Scholar
  48. [48]
    Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to twodimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.CrossRefGoogle Scholar
  49. [49]
    Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.CrossRefGoogle Scholar
  50. [50]
    Fontana, M.; Deppe, T.; Boyd, A. K.; Rinzan, M.; Liu, A. Y.; Paranjape, M.; Barbara, P. Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci. Rep. 2013, 3, 1634.CrossRefGoogle Scholar
  51. [51]
    Liu, Y. Y.; Stradins, P.; Wei, S. H. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of schottky barrier. Sci. Adv. 2016, 2, e1600069.CrossRefGoogle Scholar
  52. [52]
    Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.CrossRefGoogle Scholar
  53. [53]
    Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.Google Scholar
  54. [54]
    Hopkins, B. J.; Riviere, J. C. Work function values from contact potential difference measurements. Br. J. Appl. Phys. 1964, 15, 941–946.CrossRefGoogle Scholar
  55. [55]
    Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.CrossRefGoogle Scholar
  56. [56]
    Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.CrossRefGoogle Scholar
  57. [57]
    Wang, P.; Liu, S. S.; Luo, W. J.; Fang, H. H.; Gong, F.; Guo, N.; Chen, Z. G.; Zou, J.; Huang, Y.; Zhou, X. H. et al. Arrayed van der Waals broadband detectors for dual-band detection. Adv. Mater. 2017, 29, 1604439.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao Liu
    • 1
  • Guangzhuang Sun
    • 2
  • Peng Chen
    • 2
  • Junchi Liu
    • 1
  • Zhengwei Zhang
    • 2
  • Jia Li
    • 2
  • Huifang Ma
    • 2
  • Bei Zhao
    • 2
  • Ruixia Wu
    • 2
  • Weiqi Dang
    • 2
  • Xiangdong Yang
    • 2
  • Chen Dai
    • 2
  • Xuwan Tang
    • 2
  • Zhuojun Chen
    • 1
  • Lili Miao
    • 1
  • Xingqiang Liu
    • 1
  • Bo Li
    • 1
    Email author
  • Yuan Liu
    • 1
  • Xidong Duan
    • 2
    Email author
  1. 1.Department of Applied Physics, School of Physics and ElectronicsHunan UniversityChangshaChina
  2. 2.State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina

Personalised recommendations