Advertisement

Nano Research

, Volume 12, Issue 2, pp 331–338 | Cite as

All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring

  • Lianghao Yu
  • Yuyang Yi
  • Ting Yao
  • Yingze Song
  • Yiran Chen
  • Qiucheng Li
  • Zhou Xia
  • Nan Wei
  • Zhengnan Tian
  • Baoqing Nie
  • Li Zhang
  • Zhongfan LiuEmail author
  • Jingyu SunEmail author
Research Article

Abstract

The booming of wearable electronics has nourished the progress on developing multifunctional energy storage systems with versatile flexibility, which enable the continuous and steady power supply even under various deformed states. In this sense, the synergy of flexible energy and electronic devices to construct integrative wearable microsystems is meaningful but remains quite challenging by far. Herein, we devise an innovative supercapacitor/sensor integrative wearable device that is based upon our designed vanadium nitride-graphene (VN-G) architectures. Flexible quasi-solid-state VN-G supercapacitor with ultralight and binder-free features deliver a specific capacitance of ~ 53 F·g−1 with good cycle stability. On the other hand, VN-G derived pressure sensors fabricated throughout a spray-printing process also manifest favorably high sensitivity (40 kPa−1 at the range of 2–10 kPa), fast response time (~ 130 ms), perfect skin conformability, and outstanding stability under static and dynamic pressure conditions. In turn, their complementary unity into a self-powered wearable sensor enables the precise detection of physiological motions ranging from pulse rate to phonetic recognition, holding promise for in-practical health monitoring applications.

Keywords

VN-graphene architecture solid-state supercapacitor pressure sensor self-powered wearable sensor health monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFA0200103), the National Natural Science Foundation of China (Nos. 51702225, 21473119, 51675275, 51520105003, and 51432002), and Jiangsu Youth Science Foundation (BK20170336). L. H. Y., Y. Y. Y., Y. Z. S., Z. X., N. W., Z. N. T., L. Z., Z. F. L., and J. Y. S. acknowledge the support from Suzhou Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Suzhou, China. J. Y. S. acknowledges the support from the Thousand Youth Talents Plan of China.

Supplementary material

12274_2018_2219_MOESM1_ESM.pdf (3.5 mb)
All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring

References

  1. [1]
    Luo, N. Q.; Huang, Y.; Liu, J.; Chen, S. C.; Wong, C. P.; Zhao, N. Hollow-structured graphene-silicone-composite-based piezoresistive sensors: Decoupled property tuning and bending reliability. Adv. Mater. 2017, 29, 1702675.CrossRefGoogle Scholar
  2. [2]
    Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.CrossRefGoogle Scholar
  3. [3]
    Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.Google Scholar
  4. [4]
    Wang, H.; Wu, H.; Hasan, D.; He, T.; Shi, Q. F.; Lee, C. Self-powered dual-mode amenity sensor based on the water-air triboelectric nanogenerator. ACS Nano 2017, 11, 10337–10346.CrossRefGoogle Scholar
  5. [5]
    Wang, T.; Yang, H.; Qi, D. P.; Liu, Z. Y.; Cai, P. Q.; Zhang, H.; Chen, X. D. Mechano-based transductive sensing for wearable healthcare. Small 2018, 14, 1702933.CrossRefGoogle Scholar
  6. [6]
    Cheng, Y. L.; Wang, C. Y.; Zhong, J. W.; Lin, S. Z.; Xiao, Y. J.; Zhong, Q. Z.; Jiang, H. L.; Wu, N.; Li, W. B.; Chen, S. W. et al. Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy 2017, 34, 562–569.CrossRefGoogle Scholar
  7. [7]
    Chen, H. T.; Su, Z. M.; Song, Y.; Cheng, X. L.; Chen, X. X.; Meng, B.; Song, Z. J.; Chen, D. M.; Zhang, H. X. Omnidirectional bending and pressure sensor based on stretchable CNT-PU sponge. Adv. Funct. Mater. 2017, 27, 1604434.CrossRefGoogle Scholar
  8. [8]
    Zhong, Q. Z.; Zhong, J. W.; Cheng, X. F.; Yao, X.; Wang, B.; Li, W. B.; Wu, N.; Liu, K.; Hu, B.; Zhou, J. Paper-based active tactile sensor array. Adv. Mater. 2015, 27, 7130–7136.CrossRefGoogle Scholar
  9. [9]
    Qi, K.; He, J. X.; Wang, H. B.; Zhou, Y. M.; You, X. L.; Nan, N.; Shao, W. L.; Wang, L. D.; Ding, B.; Cui, S. Z. A highly stretchable nanofiber-based electronic skin with pressure-, strain-, and flexion-sensitive properties for health and motion monitoring. ACS Appl. Mater. Interfaces 2017, 9, 42951–42960.CrossRefGoogle Scholar
  10. [10]
    Wu, X. D.; Han, Y. Y.; Zhang, X. X.; Zhou, Z. H.; Lu, C. H. Large-area compliant, low-cost, and versatile pressure-sensing platform based on microcrack-designed carbon black@polyurethane sponge for human-machine interfacing. Adv. Funct. Mater. 2016, 26, 6246–6256.CrossRefGoogle Scholar
  11. [11]
    Lv, L. X.; Zhang, P. P.; Xu, T.; Qu, L. T. Ultrasensitive pressure sensor based on an ultralight sparkling graphene block. ACS Appl. Mater. Interfaces 2017, 9, 22885–22892.CrossRefGoogle Scholar
  12. [12]
    Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. Graphene-paper pressure sensor for detecting human motions. ACS Nano 2017, 11, 8790–8795.CrossRefGoogle Scholar
  13. [13]
    Liao, X. Q.; Liao, Q. L.; Zhang, Z.; Yan, X. Q.; Liang, Q. J.; Wang, Q. Y.; Li, M. H.; Zhang, Y. A highly stretchable ZnO@fiber-based multifunctional nanosensor for strain/temperature/UV detection. Adv. Funct. Mater. 2016, 26, 3074–3081.CrossRefGoogle Scholar
  14. [14]
    Lou, Z.; Chen, S.; Wang, L. L.; Jiang, K.; Shen, G. Z. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14.CrossRefGoogle Scholar
  15. [15]
    Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design. Adv. Mater. 2013, 25, 6692–6698.CrossRefGoogle Scholar
  16. [16]
    Wang, L. L.; Jackman, J. A.; Tan, E. L.; Park, J. H.; Potroz, M. G.; Hwang, E. T.; Cho, N. J. High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 2017, 36, 38–45.CrossRefGoogle Scholar
  17. [17]
    Li, W. G.; Xu, X. B.; Liu, C.; Tekell, M. C.; Ning, J.; Guo, J. H.; Zhang, J. C.; Fan, D. L. Ultralight and binder-free all-solid-state flexible supercapacitors for powering wearable strain sensors. Adv. Funct. Mater. 2017, 27, 1702738.CrossRefGoogle Scholar
  18. [18]
    Song, Y.; Chen, H. T.; Su, Z. M.; Chen, X. X.; Miao, L. M.; Zhang, J. X.; Cheng, X. L.; Zhang, H. X. Highly compressible integrated supercapacitor–piezoresistance-sensor system with CNT-PDMS sponge for health monitoring. Small 2017, 13, 1702091.CrossRefGoogle Scholar
  19. [19]
    Ai, Y. F.; Lou, Z.; Chen, S.; Chen, D.; Wang, Z. M.; Jiang, K.; Shen, G. Z. All rGO-on-PVDF-nanofibers based self-powered electronic skins. Nano Energy 2017, 35, 121–127.CrossRefGoogle Scholar
  20. [20]
    Wu, N.; Cheng, X. F.; Zhong, Q. Z.; Zhong, J. W.; Li, W. B.; Wang, B.; Hu, B.; Zhou, J. Cellular polypropylene piezoelectret for human body energy harvesting and health monitoring. Adv. Funct. Mater. 2015, 25, 4788–4794.CrossRefGoogle Scholar
  21. [21]
    Pan, Z. C.; Jiang, Y. C.; Yang, P. Y.; Wu, Z. Y.; Tian, W. C.; Liu, L.; Song, Y.; Gu, Q. F.; Sun, D. L.; Hu, L. F. In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 2018, 12, 2968–2979.CrossRefGoogle Scholar
  22. [22]
    Feng, L. X.; Wang, K.; Zhang, X.; Sun, X. Z.; Li, C.; Ge, X. B.; Ma, Y. W. Flexible solid-state supercapacitors with enhanced performance from hic liquid incorporated gel polymer electrolyte. Adv.erarchically graphene nanocomposite electrodes and ioni Funct. Mater. 2018, 28, 1704463.CrossRefGoogle Scholar
  23. [23]
    Zhao, J. X.; Li, C. W.; Zhang, Q. C.; Zhang, J.; Wang, X. N.; Lin, Z. Y.; Wang, J. J.; Lv, W. B.; Lu, C. H.; Wong, C. P. et al. An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J. Mater. Chem. A 2017, 5, 6928–6936.CrossRefGoogle Scholar
  24. [24]
    Zhang, W. L.; Xu, C.; Ma, C. Q.; Li, G. X.; Wang, Y. Z.; Zhang, K. Y.; Li, F.; Liu, C.; Cheng, H. M.; Du, Y. W. et al. Nitrogen-superdoped 3D graphene networks for high-performance supercapacitors. Adv. Mater. 2017, 29, 1701677.CrossRefGoogle Scholar
  25. [25]
    Liu, T.; Zhang, L. Y.; You, W.; Yu, J. G. Core-shell nitrogen-doped carbon hollow spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor. Small 2018, 14, 1702407.CrossRefGoogle Scholar
  26. [26]
    Jin, Y.; Chen, H. Y.; Chen, M. H.; Liu, N.; Li, Q. W. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 3408–3416.CrossRefGoogle Scholar
  27. [27]
    Qin, T. F.; Liu, B. L.; Wen, Y. X.; Wang, Z. L.; Jiang, X. Y.; Wan, Z. Y.; Peng, S. L.; Cao, G. Z.; He, D. Y. Freestanding flexible graphene foams@polypyrrole@MnO2 electrodes for high-performance supercapacitors. J. Mater. Chem. A 2016, 4, 9196–9203.CrossRefGoogle Scholar
  28. [28]
    Xiong, T.; Lee, W. S. V.; Huang, X. L.; Xue, J. M. Mn3O4/reduced graphene oxide based supercapacitor with ultra-long cycling performance. J. Mater. Chem. A 2017, 5, 12762–12768.CrossRefGoogle Scholar
  29. [29]
    Ouyang, Y.; Xia, X. F.; Ye, H. T.; Wang, L.; Jiao, X. Y.; Lei, W.; Hao, Q. L. Three-dimensional hierarchical structure ZnO@c@NiO on carbon cloth for asymmetric supercapacitor with enhanced cycle stability. ACS Appl. Mater. Interfaces 2018, 10, 3549–3561.CrossRefGoogle Scholar
  30. [30]
    Lu, X. H.; Yu, M. H.; Zhai, T.; Wang, G. M.; Xie, S. L.; Liu, T. Y.; Liang, C. L.; Tong, Y. X.; Li, Y. High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett. 2013, 13, 2628–2633.CrossRefGoogle Scholar
  31. [31]
    Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li–S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.CrossRefGoogle Scholar
  32. [32]
    Song, Y. Z.; Zhao, W.; Wei, N.; Zhang, L.; Ding, F.; Liu, Z. F.; Sun, J. Y. In-situ PECVD-enabled graphene-V2O3 hybrid host for lithium–sulfur batteries. Nano Energy 2018, 53, 432–439.CrossRefGoogle Scholar
  33. [33]
    Mo, R. W.; Rooney, D.; Sun, K. N.; Yang, H. Y. 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible li-ion battery. Nat. Commun. 2017, 8, 13949.Google Scholar
  34. [34]
    He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174–182.CrossRefGoogle Scholar
  35. [35]
    Cheng, Y. L.; Huang, L.; Xiao, X.; Yao, B.; Yuan, L. Y.; Li, T. Q.; Hu, Z. M.; Wang, B.; Wan, J.; Zhou, J. Flexible and cross-linked N-doped carbon nanofiber network for high performance freestanding supercapacitor electrode. Nano Energy 2015, 15, 66–74.CrossRefGoogle Scholar
  36. [36]
    Wang, G. M.; Wang, H. Y.; Lu, X. H.; Ling, Y. C.; Yu, M. H.; Zhai, T.; Tong, Y. X.; Li, Y. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 2014, 26, 2676–2682.CrossRefGoogle Scholar
  37. [37]
    Cheng, Y. W.; Lu, S. T.; Zhang, H. B.; Varanasi, C. V.; Liu, J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano Lett. 2012, 12, 4206–4211.CrossRefGoogle Scholar
  38. [38]
    Wang, R. T.; Yan, X. B.; Lang, J. W.; Zheng, Z. M.; Zhang, P. A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VNelectrode materials. J. Mater. Chem. A 2014, 2, 12724–12732.CrossRefGoogle Scholar
  39. [39]
    Lu, X. H.; Yu, M. H.; Wang, G. M.; Zhai, T.; Xie, S. L.; Ling, Y. C.; Tong, Y. X.; Li, Y. H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv. Mater. 2013, 25, 267–272.CrossRefGoogle Scholar
  40. [40]
    Wang, R. T.; Lang, J. W.; Zhang, P.; Lin, Z. Y.; Yan, X. B. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv. Funct. Mater. 2015, 25, 2270–2278.CrossRefGoogle Scholar
  41. [41]
    Liu, W. J.; Liu, N. S.; Yue, Y.; Rao, J. Y.; Cheng, F.; Su, J.; Liu, Z. T.; Gao, Y. H. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 2018, 14, 1704149.CrossRefGoogle Scholar
  42. [42]
    Ma, Y. N.; Yue, Y.; Zhang, H.; Cheng, F.; Zhao, W. Q.; Rao, J. Y.; Luo, S. J.; Wang, J.; Jiang, X. L.; Liu, Z. T. et al. 3D synergistical mxene/reduced graphene oxide aerogel for a piezoresistive sensor. ACS Nano 2018, 12, 3209–3216.CrossRefGoogle Scholar
  43. [43]
    Wang, Q.; Jian, M. Q.; Wang, C. Y.; Zhang, Y. Y. Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv. Funct. Mater. 2017, 27, 1605657.CrossRefGoogle Scholar
  44. [44]
    Pang, Y.; Zhang, K. N.; Yang, Z.; Jiang, S.; Ju, Z. Y.; Li, Y. X.; Wang, X. F.; Wang, D. Y.; Jian, M. Q.; Zhang, Y. Y. et al. Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity. ACS Nano 2018, 12, 2346–2354.CrossRefGoogle Scholar
  45. [45]
    Kim, K. H.; Hong, S. K.; Jang, N. S.; Ha, S. H.; Lee, H. W.; Kim, J. M. Wearable resistive pressure sensor based on highly flexible carbon composite conductors with irregular surface morphology. ACS Appl. Mater. Interfaces 2017, 9, 17499–17507.CrossRefGoogle Scholar
  46. [46]
    Zhao, X. H.; Ma, S. N.; Long, H.; Yuan, H. Y.; Tang, C. Y.; Cheng, P. K.; Tsang, Y. H. Multifunctional sensor based on porous carbon derived from metal-organic frameworks for real time health monitoring. ACS Appl. Mater. Interfaces 2018, 10, 3986–3993.CrossRefGoogle Scholar
  47. [47]
    Nichols, W. W. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 2005, 18, 3S–10S.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lianghao Yu
    • 1
  • Yuyang Yi
    • 1
  • Ting Yao
    • 2
  • Yingze Song
    • 1
  • Yiran Chen
    • 1
  • Qiucheng Li
    • 1
  • Zhou Xia
    • 1
  • Nan Wei
    • 1
  • Zhengnan Tian
    • 1
  • Baoqing Nie
    • 2
  • Li Zhang
    • 1
  • Zhongfan Liu
    • 1
    • 3
    Email author
  • Jingyu Sun
    • 1
    Email author
  1. 1.College of Energy, Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu ProvinceSoochow UniversitySuzhouChina
  2. 2.School of Electronic and Information EngineeringSoochow UniversitySuzhouChina
  3. 3.Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina

Personalised recommendations