Nano Research

, Volume 12, Issue 2, pp 323–329 | Cite as

1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells

  • Xian Jiang
  • Yang Liu
  • Jiaxin Wang
  • Yufei Wang
  • Yuexin Xiong
  • Qun Liu
  • Naixu Li
  • Jiancheng ZhouEmail author
  • Gengtao FuEmail author
  • Dongmei Sun
  • Yawen TangEmail author
Research Article


Developing highly efficient bifunctional cathode and anode electrocatalysts is very important for the large-scale application of direct formic acid fuel cells. However, the high-cost and poor CO-tolerance ability of the most commonly used Pt greatly block this process. To increase the utilization efficiency and extend bifunctional properties of precious Pt, herein, coral-like Pt3Ag nanocrystals are developed as an excellent bifunctional electrocatalyst through a facile one-pot solvothermal method. The formation mechanism of Pt3Ag nanocorals has been elaborated well via a series of control experiments. It is proved that 1-naphthol serving as a guiding surfactant plays a key role in the formation of high-quality nanocorals. Thanks to the unique coral-like structure and alloy effects, the developed Pt3Ag nanocorals present significantly enhanced electrocatalytic properties (including activity, stability and CO-tolerance ability) towards both the cathodic oxygen reduction and anodic formic acid oxidation, as compared with those of commercial Pt black and Pt-based nanoparticles. The present synthetic method can also be extended to fabricate other bimetallic electrocatalysts with unique morphology and structure.


Pt3Ag alloy nanocorals bifunctional electrocatalyst oxygen reduction reaction formic acid oxidation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 21576139, 21875112, 21576050 and 51602052), Jiangsu Provincial Natural Science Foundation of China (No. BK20150604), National and Local Joint Engineering Research Center of Biomedical Functional Materials, and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

12274_2018_2218_MOESM1_ESM.pdf (2.5 mb)
1-Naphthol induced Pt3Ag nanocorals as bifunctional cathode and anode catalysts of direct formic acid fuel cells


  1. [1]
    Qu, X. M.; Cao, Z. M.; Zhang, B. W.; Tian, X. C.; Zhu, F. C.; Zhang, Z. C.; Jiang, Y. X.; Sun, S. G. One-pot synthesis of single-crystalline PtPb nanodendrites with enhanced activity for electrooxidation of formic acid. Chem. Commun. 2016, 52, 4493–4496.Google Scholar
  2. [2]
    Zhang, L. Y.; Zhao, Z. L.; Yuan, W. Y.; Li, C. M. Facile one-pot surfactant-free synthesis of uniform Pd6Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation. Nanoscale 2016, 8, 1905–1909.Google Scholar
  3. [3]
    Lai, J. P.; Niu, W. X; Li, S. P.; Wu, F. X.; Luque, R.; Xu, G. B. Concave and duck web-like platinum nanopentagons with enhanced electrocatalytic properties for formic acid oxidation. J. Mater. Chem. A 2016, 4, 807–812.Google Scholar
  4. [4]
    Fu, G. T.; Xia, B. Y.; Ma, R. G.; Chen, Y.; Tang, Y. W.; Lee, J. M. Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy 2015, 12, 824–832.Google Scholar
  5. [5]
    Liu, Z. Y.; Fu, G. T.; Li, J. H.; Liu, Z. Q.; Xu, L.; Sun, D. M.; Tang, Y. W. Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 4686–4696.Google Scholar
  6. [6]
    Feng, L. G.; Chang, J. F.; Jiang, K.; Xue, H. G.; Liu, C. P.; Cai, W. B.; Xing, W.; Zhang, J. J. Nanostructured palladium catalyst poisoning depressed by cobalt phosphide in the electro-oxidation of formic acid for fuel cells. Nano Energy 2016, 30, 355–361.Google Scholar
  7. [7]
    Wang, X. X.; Yang, J. D.; Yin, H. J.; Song, R.; Tang, Z. Y. “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation. Adv. Mater. 2013, 25, 2728–2732.Google Scholar
  8. [8]
    Han, S. H.; Liu, H. M.; Bai, J.; Tian, X. L.; Xia, B. Y.; Zeng, J. H.; Jiang, J. X.; Chen, Y. Platinum-silver alloy nanoballoon nanoassemblies with super catalytic activity for the formate electrooxidation. ACS Appl. Energy Mater. 2018, 1, 1252–1258.Google Scholar
  9. [9]
    Sriphathoorat, R.; Wang, K.; Luo, S. P.; Tang, M.; Du, H. Y.; Du, X. W.; Shen, P. K. Well-defined PtNiCo core-shell nanodendrites with enhanced catalytic performance for methanol oxidation. J. Mater. Chem. A 2016, 4, 18015–18021.Google Scholar
  10. [10]
    Mistry, H.; Varela, A. S.; Kühl, S.; Strasser, P.; Cuenya, B. R. Nanostructured electrocatalysts with tunable activity and selectivity. Nat. Rev. Mater. 2016, 1, 16009.Google Scholar
  11. [11]
    Scofield, M. E.; Koenigsmann, C.; Wang, L.; Liu, H. Q.; Wong, S. S. Tailoring the composition of ultrathin, ternary alloy PtRuFe nanowires for the methanol oxidation reaction and formic acid oxidation reaction. Energy Environ. Sci. 2015, 8, 350–363.Google Scholar
  12. [12]
    Fu, G. T.; Liu, Y.; Wu, Z. X.; Lee, J. M. 3D robust carbon aerogels immobilized with Pd3Pb nanoparticles for oxygen reduction catalysis. ACS Appl. Nano Mater. 2018, 1, 1904–1911.Google Scholar
  13. [13]
    Bu, L. Z.; Ding, J. B.; Guo, S. J.; Zhang, X.; Su, D.; Zhu, X.; Yao, J. L.; Guo, J.; Lu, G.; Huang, X. Q. A general method for multimetallic platinum alloy nanowires as highly active and stable oxygen reduction catalysts. Adv. Mater. 2015, 27, 7204–7212.Google Scholar
  14. [14]
    Xiong, Y.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Zhang, S. L.; Ren, H. L.; Rong, H. P.; Zheng, X. S; Chen, C.; Peng, Q. et al. PtAl truncated octahedron nanocrystals for improved formic acid electrooxidation. Chem. Commun. 2018, 54, 3951–3954.Google Scholar
  15. [15]
    Wu, H. F.; Qi, W. H.; Peng, H. C.; He, J. T. Facile synthesis of Ag@Pt core-shell nanoparticles with different dendrites Pt shells. Chemistry Select 2017, 2, 9344–9348.Google Scholar
  16. [16]
    Liu, Q.; He, Y. M.; Weng, X. X.; Wang, A. J.; Yuan, P. X.; Fang, K. M.; Feng, J. J. One-pot aqueous fabrication of reduced graphene oxide supported porous PtAg alloy nanoflowers to greatly boost catalytic performances for oxygen reduction and hydrogen evolution. J. Colloid Interface Sci. 2018, 513, 455–463.Google Scholar
  17. [17]
    Bu, L. Z.; Guo, S. J.; Zhang, X.; Shen, X.; Su, D.; Lu, G.; Zhu, X.; Yao, J. L.; Guo, J.; Huang, X. Q. Surface engineering of hierarchical platinumcobalt nanowires for efficient electrocatalysis. Nat. Commun. 2016, 7, 11850.Google Scholar
  18. [18]
    Feng, Y. G.; Bu, L. Z.; Guo, S. J.; Guo, J.; Huang, X. Q. 3D platinumlead nanowire networks as highly efficient ethylene glycol oxidation electrocatalysts. Small 2016, 12, 4464–4470.Google Scholar
  19. [19]
    Tong, X.; Zhang, J. M.; Zhang, G. X.; Wei, Q. L.; Chenitz, R.; Claverie, J. P.; Sun, S. H. Ultrathin carbon-coated Pt/carbon nanotubes: A highly durable electrocatalyst for oxygen reduction. Chem. Mater. 2017, 29, 9579–9587.Google Scholar
  20. [20]
    Wang, R. Y.; Liu, J. G.; Liu, P.; Bi, X. X.; Yan, X. L.; Wang, W. X.; Meng, Y. F.; Ge, X. B.; Chen, M. W.; Ding, Y. Ultra-thin layer structured anodes for highly durable low-Pt direct formic acid fuel cells. Nano Res. 2014, 7, 1569–1580.Google Scholar
  21. [21]
    Chen, Y. F.; Fu, G. T.; Li, Y. Y.; Gu, Q. S.; Xu, L.; Sun, D. M.; Tang, Y. W. L-glutamic acid derived PtPd@Pt core/satellite nanoassemblies as an effectively cathodic electrocatalyst. J. Mater. Chem. A 2017, 5, 3774–3779.Google Scholar
  22. [22]
    Han, L.; Cui, P. L.; He, H. Y.; Liu, H.; Peng, Z. J.; Yang, J. A seedmediated approach to the morphology-controlled synthesis of bimetallic copper-platinum alloy nanoparticles with enhanced electrocatalytic performance for the methanol oxidation reaction. J. Power Sources 2015, 286, 488–494.Google Scholar
  23. [23]
    Wang, Z. Q.; Ren, X.; Luo, Y. L.; Wang, L.; Cui, G. W.; Xie, F. Y.; Wang, H. J.; Xie, Y.; Sun, X. P. An ultrafine platinum-cobalt alloy decorated cobalt nanowire array with superb activity toward alkaline hydrogen evolution. Nanoscale 2018, 10, 12302–12307Google Scholar
  24. [24]
    Xu, X. L.; Zhang, X.; Sun, H.; Yang, Y.; Dai, X. P.; Gao, J. S.; Li, X. Y.; Zhang, P. F.; Wang, H. H.; Yu, N. F. et al. Synthesis of Pt-Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2014, 53, 12522–12527.Google Scholar
  25. [25]
    Li, Z. S.; Li, Y. Y.; He, C. Y.; Shen, P. K. Bimetallic PtAg alloyed nanoparticles and 3-D mesoporous graphene nanosheet hybrid architectures for advanced oxygen reduction reaction electrocatalysts. J. Mater. Chem. A 2017, 5, 23158–23169.Google Scholar
  26. [26]
    Zhu, J. B.; Xiao, M. L.; Li, K.; Liu, C. P.; Xing, W. Superior electrocatalytic activity from nanodendritic structure consisting of a PtFe bimetallic core and Pt shell. Chem. Commun. 2015, 51, 3215–3218.Google Scholar
  27. [27]
    Zhang, B. W.; Zhang, Z. C.; Liao, H. G.; Gong, Y.; Gu, L.; Qu, X. M.; You, L. X.; Liu, S.; Huang, L.; Tian, X. C. et al. Tuning Pt-skin to Ni-rich surface of Pt3Ni catalysts supported on porous carbon for enhanced oxygen reduction reaction and formic electro-oxidation. Nano Energy 2016, 19, 198–209.Google Scholar
  28. [28]
    Li, C. J.; Xu, Y.; Li, Y. H.; Xue, H. R.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Enhanced dual fuel cell electrocatalysis with trimetallic PtPdCo mesoporous nanoparticles. Chem. Asian J. 2018, 13, 2939–2946.Google Scholar
  29. [29]
    Yan, X. X.; Hu, X. J.; Fu, G. T.; Xu, L.; Lee, J. M.; Tang, Y. W. Facile synthesis of porous Pd3Pt half-shells with rich “active sites” as efficient catalysts for formic acid oxidation. Small 2018, 14, 1703940.Google Scholar
  30. [30]
    Romanowski, S.; Bartczak, W. M.; Wesolkowski, R. Density functional calculations of the hydrogen adsorption on transition metals and their alloys. An application to catalysis. Langmuir 1999, 15, 5773–5780.Google Scholar
  31. [31]
    Wang, H. J.; Yin, S. L.; Xu, Y.; Li, X. N.; Alshehri, A. A.; Yamauchi, Y.; Xue, H. R.; Kaneti, Y. V.; Wang, L. Direct fabrication of tri-metallic PtPdCu tripods with branched exteriors for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 8662–8668.Google Scholar
  32. [32]
    Bai, J.; Xiao, X.; Xue, Y. Y.; Jiang, J. X.; Zeng, J. H.; Li, X. F.; Chen, Y. Bimetallic platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction. ACS Appl. Mater. Interfaces 2018, 10, 19755–19763.Google Scholar
  33. [33]
    Eid, K.; Ahmad, Y. H.; Yu, H. J.; Li, Y. H.; Li, X. N.; Alqaradawi, S. Y.; Wang, H. J.; Wang, L. Rational one-step synthesis of porous PtPdRu nanodendrites for ethanol oxidation reaction with a superior tolerance for co-poisoning. Nanoscale 2017, 9, 18881–18889.Google Scholar
  34. [34]
    Demirci, U. B. Theoretical means for searching bimetallic alloys as anode electrocatalysts for direct liquid-feed fuel cells. J. Power Sources 2007, 173, 11–18.Google Scholar
  35. [35]
    Xu, J. B.; Zhao, T. S; Liang, Z. X. Synthesis of active platinum-silver alloy electrocatalyst toward the formic acid oxidation reaction. J. Phys. Chem. C 2008, 112, 17362–17367.Google Scholar
  36. [36]
    Yang, X.; Roling, L. T.; Vara, M.; Elnabawy, A. O.; Zhao, M.; Hood, Z. D.; Bao, S. X.; Mavrikakis, M.; Xia, Y. N. Synthesis and characterization of Pt-Ag alloy nanocages with enhanced activity and durability toward oxygen reduction. Nano Lett. 2016, 16, 6644–6649.Google Scholar
  37. [37]
    Fu, T.; Fang, J.; Wang, C. S.; Zhao, J. B. Hollow porous nanoparticles with Pt skin on a Ag-Pt alloy structure as a highly active electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4, 8803–8811.Google Scholar
  38. [38]
    Liu, W.; Haubold, D.; Rutkowski, B.; Oschatz, M.; Huebner, R.; Werheid, M.; Ziegler, C.; Sonntag, L.; Liu, S. H.; Zheng, Z. K. et al. Selfsupporting hierarchical porous PtAg alloy nanotubular aero-gels as highly active and durable electrocatalysts. Chem. Mater. 2016, 28, 6477–6483.Google Scholar
  39. [39]
    Chen, Y. F.; Jiang, X.; Li, Y. Y.; Li, P.; Liu, Q. C.; Fu, G. T.; Xu, L.; Sun, D. M.; Tang, Y. W. General strategy for synthesis of Pd3M (M = Co and Ni) nanoassemblies as high-performance catalysts for electrochemical oxygen reduction. Adv. Mater. Interfaces 2018, 5, 1701015.Google Scholar
  40. [40]
    Mao, J. J.; Cao, T.; Chen, Y. J.; Wu, Y.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Seed-mediated synthesis of hexameric octahedral PtPdCu nanocrystals with high electrocatalytic performance. Chem. Commun. 2015, 51, 15406–15409.Google Scholar
  41. [41]
    Pei, J. J.; Mao, J. J.; Liang, X.; Zhuang, Z. B.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Ultrathin Pt-Zn nanowires: High-performance catalysts for electrooxidation of methanol and formic acid. ACS Sustain. Chem. Eng. 2018, 6, 77–81.Google Scholar
  42. [42]
    Zeb Gul Sial, M. A.; Ud Din, M. A.; Wang, X. Multimetallic nanosheets: Synthesis and applications in fuel cells. Chem. Soc. Rev. 2018, 47, 6175–6200.Google Scholar
  43. [43]
    Yang, J. H.; Chen, X. J.; Ye, F.; Wang, C. X.; Zheng, Y. G.; Yang, J. Core-shell CdSe@Pt nanocomposites with superior electrocatalytic activity enhanced by lateral strain effect. J. Mater. Chem. 2011, 21, 9088–9094.Google Scholar
  44. [44]
    Sun, S. H.; Yang, D. Q.; Villers, D.; Zhang, G. X.; Sacher, E.; Dodelet, J. P. Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 2008, 20, 571–574.Google Scholar
  45. [45]
    Zhang, X. W.; Yin, H. J.; Wang, J. F.; Chang, L.; Gao, Y.; Liu, W.; Tang, Z. Y. Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 2013, 5, 8392–8397.Google Scholar
  46. [46]
    Lu, Q. Q.; Wang, H. J.; Eid, K.; Alothman, Z. A.; Malgras, V.; Yamauchi, Y.; Wang, L. Synthesis of hollow platinum-palladium nanospheres with a dendritic shell as efficient electrocatalysts for methanol oxidation. Chem. Asian J. 2016, 11, 1939–1944.Google Scholar
  47. [47]
    Luan, C. L.; Zhou, Q. X.; Wang, Y.; Xiao, Y.; Dai, X. P.; Huang, X. L.; Zhang, X. A general strategy assisted with dual reductants and dual protecting agents for preparing Pt-based alloys with high-index facets and excellent electrocatalytic performance. Small 2017, 13, 1702617.Google Scholar
  48. [48]
    Qin, Y. C.; Zhang, X.; Dai, X. P.; Sun, H.; Yang, Y.; Li, X. S.; Shi, Q. X.; Gao, D. W.; Wang, H.; Yu, N. F. et al. Graphene oxide-assisted synthesis of Pt-Co alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Small 2016, 12, 524–533.Google Scholar
  49. [49]
    Liu, D.; Xie, M. L.; Wang, C. M.; Liao, L. W.; Qiu, L.; Ma, J.; Huang, H.; Long, R.; Jiang, J.; Xiong, Y. J. Pd-Ag alloy hollow nanostructures with interatomic charge polarization for enhanced electrocatalytic formic acid oxidation. Nano Res. 2016, 9, 1590–1599.Google Scholar
  50. [50]
    Klinkova, A.; De Luna, P.; Sargent, E. H.; Kumacheva, E.; Cherepanov, P. V. Enhanced electrocatalytic performance of palladium nanoparticles with high energy surfaces in formic acid oxidation. J. Mater. Chem. A 2017, 5, 11582–11585.Google Scholar
  51. [51]
    Wang, A. J.; Ju, K. J.; Zhang, Q. L.; Song, P.; Wei, J.; Feng, J. J. Folic acid bio-inspired route for facile synthesis of AuPt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions. J. Power Sources 2016, 326, 227–234.Google Scholar
  52. [52]
    Yang, P. P.; Yuan, X. L.; Hu, H. C.; Liu, Y. L.; Zheng, H. W.; Yang, D.; Chen, L.; Cao, M. H.; Xu, Y.; Min, Y. L. et al. Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation. Adv. Funct. Mater. 2018, 28, 1704774.Google Scholar
  53. [53]
    Fu, G. T.; Liu, H. M.; You, N. K.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Dendritic platinum-copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Res. 2016, 9, 755–765.Google Scholar
  54. [54]
    Fu, G. T.; Zhang, Q.; Wu, J. Y.; Sun, D. M.; Xu, L.; Tang, Y. W.; Chen, Y. Arginine-mediated synthesis of cube-like platinum nanoassemblies as efficient electrocatalysts. Nano Res. 2015, 8, 3963–3971.Google Scholar
  55. [55]
    Xu, H.; Yan, B.; Li, S. M.; Wang, J.; Wang, C. Q.; Guo, J.; Du, Y. K. Facile construction of N-doped graphene supported hollow PtAg nanodendrites as highly efficient electrocatalysts toward formic acid oxidation reaction. ACS Sustain. Chem. Eng. 2018, 6, 609–617.Google Scholar
  56. [56]
    Kim, Y.; Kim, H.; Kim, W. B. PtAg nanotubes for electrooxidation of ethylene glycol and glycerol in alkaline media. Electrochem. Commun. 2014, 46, 36–39.Google Scholar
  57. [57]
    Cao, X.; Wang, N.; Han, Y.; Gao, C. Z.; Xu, Y.; Li, M. X.; Shao, Y. H. PtAg bimetallic nanowires: Facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy 2015, 12, 105–114.Google Scholar
  58. [58]
    Fang, C. H.; Zhao, J.; Zhao, G. L.; Kuai, L.; Geng, B. Y. Simultaneous tunable structure and composition of PtAg alloyed nanocrystals as superior catalysts. Nanoscale 2016, 8, 14971–14978.Google Scholar
  59. [59]
    Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity of Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205–1214.Google Scholar
  60. [60]
    Fu, G. T.; Ding, L. F.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Facile water-based synthesis and catalytic properties of platinum-gold alloy nanocubes. CrystEngComm 2014, 16, 1606–1610.Google Scholar
  61. [61]
    Huang, Y. Y.; Zhao, T. S.; Zeng, L.; Tan, P.; Xu, J. B. A facile approach for preparation of highly dispersed platinum-copper/carbon nanocatalyst toward formic acid electro-oxidation. Electrochim. Acta 2016, 190, 956–963.Google Scholar
  62. [62]
    Engelbrekt, C.; Šešelj, N.; Poreddy, R.; Riisager, A.; Ulstrup, J.; Zhang, J. Atomically thin Pt shells on Au nanoparticle cores: Facile synthesis and efficient synergetic catalysis. J. Mater. Chem. A 2016, 4, 3278–3286.Google Scholar
  63. [63]
    Jiang, B.; Li, C. L.; Tang, J.; Takei, T.; Kim, J. H.; Ide, Y.; Henzie, J.; Tominaka, S.; Yamauchi, Y. Tunable-sized polymeric micelles and their assembly for the preparation of large mesoporous platinum nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 10037–10041.Google Scholar
  64. [64]
    Weng, X. X.; Liu, Q.; Feng, J. J.; Yuan, J. H.; Wang, A. J. Dendrite-like PtAg alloyed nanocrystals: Highly active and durable advanced electrocatalysts for oxygen reduction and ethylene glycol oxidation reactions. J. Colloid Interface Sci. 2017, 504, 680–687.Google Scholar
  65. [65]
    Hong, W.; Wang, J.; Wang, E. K. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl. Mater. Interfaces 2014, 6, 9481–9487.Google Scholar
  66. [66]
    Jiang, L. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J. Facile solvothermal synthesis of Pt4Co multi-dendrites: An effective electrocatalyst for oxygen reduction and glycerol oxidation. ChemElectroChem 2017, 4, 2909–2914.Google Scholar
  67. [67]
    Saleem, F.; Xu, B.; Ni, B.; Liu, H. L.; Nosheen, F.; Li, H. Y.; Wang, X. Atomically thick Pt-Cu nanosheets: Self-assembled sandwich and nanoring-like structures. Adv. Mater. 2015, 27, 2013–2018.Google Scholar
  68. [68]
    Jiang, X.; Fu, G. T.; Wu, X.; Liu, Y.; Zhang, M. Y.; Sun, D. M.; Xu, L.; Tang, Y. W. Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. Nano Res. 2018, 11, 499–510.Google Scholar
  69. [69]
    Zheng, F. L.; Luk, S. Y.; Kwong, T. L.; Yung, K. F. Synthesis of hollow PtAg alloy nanospheres with excellent electrocatalytic performances towards methanol and formic acid oxidations. RSC Adv. 2016, 6, 44902–44907.Google Scholar
  70. [70]
    Wang, A. J.; Liu, L.; Lin, X. X.; Yuan, J. H.; Feng, J. J. One-pot synthesis of 3D freestanding porous PtAg hollow chain-like networks as efficient electrocatalyst for oxygen reduction reaction. Electrochim. Acta 2017, 245, 883–892.Google Scholar
  71. [71]
    Feng, Y. Y.; Bi, L. X.; Liu, Z. H.; Kong, D. S.; Yu, Z. Y. Significantly enhanced electrocatalytic activity for methanol electro-oxidation on Ag oxide-promoted PtAg/C catalysts in alkaline electrolyte. J. Catal. 2012, 290, 18–25.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringSoutheast UniversityNanjingChina
  2. 2.Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjingChina
  3. 3.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations