Nano Research

, Volume 12, Issue 2, pp 309–314 | Cite as

Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method

  • Xinzhang Lin
  • Chao LiuEmail author
  • Keju Sun
  • Ren’an Wu
  • Xuemei Fu
  • Jiahui HuangEmail author
Research Article


In order to understand the structure–property correlation and explore the application of metal nanoclusters, it is important and intriguing to determine their crystal structure and obtain high-yield. At the same time, this is also a challenge in nanoscience and technology. Here, we report the highly efficient synthesis of Pt1Ag28 nanocluster via one-pot chemical wet method. The crystal structure of Pt1Ag28 nanocluster was determined by X-ray crystallography to be a face centered cubic (FCC) kernel. This novel structure is the structural isomerization of Pt1Ag28 nanocluster reported before. This phenomenon is first discovered in the synthesis of alloy nanoclusters. In addition, Pt1Ag28 nanocluster has high yield and exhibits potential optics in the near infrared (NIR) fluorescent imaging. The time-dependent density functional theory (TD-DFT) calculation implied that the optical property of Pt1Ag28 was sensitive to its structure. This work provides a simple method to synthesize alloy nanoclusters with structural isomerization.


Pt1Ag28 nanocluster one-pot synthesis structural isomerization high yield strong fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (No. 21601178) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA09030103). We thank W. M. Qin and other staff at the Shanghai Synchrotron Radiation Facility for assistance during the crystallographic data collection.

Supplementary material

12274_2018_2216_MOESM1_ESM.pdf (354 kb)
checkCIF/PLATON report
12274_2018_2216_MOESM2_ESM.pdf (1.2 mb)
Structural isomer and high-yield of Pt1Ag28 nanocluster via one-pot chemical wet method


  1. [1]
    Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.Google Scholar
  2. [2]
    Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.Google Scholar
  3. [3]
    Tian, D. H.; Qian, Z. S.; Xia, Y. S.; Zhu, C. Q. Gold nanocluster-based fluorescent probes for near-infrared and turn-on sensing of glutathione in living cells. Langmuir 2012, 28, 3945–3951.Google Scholar
  4. [4]
    Cao, S. M.; Ding, S. S.; Liu, Y. Z.; Zhu, A. W.; Shi, G. Y. Biomimetic mineralization of gold nanoclusters as multifunctional thin films for glass nanopore modification, characterization, and sensing. Anal. Chem. 2017, 89, 7886–7892.Google Scholar
  5. [5]
    Wu, Y. T.; Shanmugam, C.; Tseng, W. B.; Hiseh, M. M.; Tseng, W. L. A gold nanocluster-based fluorescent probe for simultaneous pH and temperature sensing and its application to cellular imaging and logic gates. Nanoscale 2016, 8, 11210–11216.Google Scholar
  6. [6]
    Mukherji, R.; Samanta, A.; Illathvalappil, R.; Chowdhury, S.; Prabhune, A.; Devi, R. N. Selective imaging of quorum sensing receptors in bacteria using fluorescent Au nanocluster probes surface functionalized with signal molecules. ACS Appl. Mater. Interfaces 2013, 5, 13076–13081.Google Scholar
  7. [7]
    Nie, L. B.; Xiao, X. Y.; Yang, H. C. Preparation and biomedical applications of gold nanocluster. J. Nanosci. Nanotechnol. 2016, 16, 8164–8175.Google Scholar
  8. [8]
    Kauffman, D. R.; Alfonso, D.; Matranga, C.; Qian, H. F.; Jin, R. C. Experimental and computational investigation of Au25 clusters and CO2: A unique interaction and enhanced electrocatalytic activity. J. Am. Chem. Soc. 2012, 134, 10237–10243.Google Scholar
  9. [9]
    Liu, L. C.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018, 118, 4981–5079.Google Scholar
  10. [10]
    Liu, C.; Abroshan, H.; Yan, C. Y.; Li, G.; Haruta, M. One-pot synthesis of Au11(PPh2Py)7Br3 for the highly chemoselective hydrogenation of nitrobenzaldehyde. ACS Catal. 2016, 6, 92–99.Google Scholar
  11. [11]
    Shoaib, A.; Ji, M. W.; Qian, H. M.; Liu, J. J.; Xu, M.; Zhang, J. T. Noble metal nanoclusters and their in situ calcination to nanocrystals: Precise control of their size and interface with TiO2 nanosheets and their versatile catalysis applications. Nano Res. 2016, 9, 1763–1774.Google Scholar
  12. [12]
    Liu, M.; Li, H. M.; Wang, W. J. Defective TiO2 with oxygen vacancy and nanocluster modification for efficient visible light environment remediation. Catal. Today 2016, 264, 236–242.Google Scholar
  13. [13]
    Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.Google Scholar
  14. [14]
    Zhang, M.; Frei, H. Towards a molecular level understanding of the multi-electron catalysis of water oxidation on metal oxide surfaces. Catal. Lett. 2015, 145, 420–435.Google Scholar
  15. [15]
    Qian, H. F.; Zhu, M. Z.; Wu, Z. K.; Jin, R. C. Quantum sized gold nanoclusters with atomic precision. Acc. Chem. Res. 2012, 45, 1470–1479.Google Scholar
  16. [16]
    Jin, R. C.; Nobusada, K. Doping and alloying in atomically precise gold nanoparticles. Nano Res. 2014, 7, 285–300.Google Scholar
  17. [17]
    Du, X. L.; Wang, X. L.; Li, Y. H.; Wang, Y. L.; Zhao, J. J.; Fang, L. J.; Zheng, L. R.; Tong, H.; Yang, H. G. Isolation of single Pt atoms in a silver cluster: Forming highly efficient silver-based cocatalysts for photocatalytic hydrogen evolution. Chem. Commun. 2017, 53, 9402–9405.Google Scholar
  18. [18]
    Wang, S. X.; Meng, X. M.; Das, A.; Li, T.; Song, Y. B.; Cao, T. T.; Zhu, X. Y.; Zhu, M. Z.; Jin, R. C. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25–x nanoclusters: The 13th silver atom matters. Angew. Chem., Int. Ed. 2014, 53, 2376–2380.Google Scholar
  19. [19]
    Xiang, J.; Li, P.; Song, Y. B.; Liu, X.; Chong, H. B.; Jin, S.; Pei, Y.; Yuan, X. Y.; Zhu, M. Z. X-ray crystal structure, and optical and electrochemical properties of the Au15Ag3(SC6H11)14 nanocluster with a core-shell structure. Nanoscale 2015, 7, 18278–18283.Google Scholar
  20. [20]
    Wan, X. K.; Cheng, X. L.; Tang, Q.; Han, Y. Z.; Hu, G. X.; Jiang, D. E.; Wang, Q. M. Atomically precise bimetallic Au19Cu30 nanocluster with an icosidodecahedral Cu30 shell and an alkynyl-Cu interface. J. Am. Chem. Soc. 2017, 139, 9451–9454.Google Scholar
  21. [21]
    Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F. et al. Doping-induced anisotropic self-assembly of silver icosahedra in [Pt2Ag23Cl7(PPh3)10] nanoclusters. J. Am. Chem. Soc. 2017, 139, 1053–1056.Google Scholar
  22. [22]
    Chen, T.; Yang, S.; Chai, J. S.; Song, Y. B.; Fan, J. Q.; Rao, B.; Sheng, H. T.; Yu, H. Z.; Zhu, M. Z. Crystallization-induced emission enhancement: A novel fluorescent Au-Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 2017, 3, e1700956.Google Scholar
  23. [23]
    Yan, J. Z.; Su, H. F.; Yang, H. Y.; Malola, S.; Lin, S. C.; Häkkinen, H.; Zheng, N. F. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2-(M = Pd, Pt) clusters. J. Am. Chem. Soc. 2015, 137, 11880–11883.Google Scholar
  24. [24]
    Yan, J. Z.; Su, H. F.; Yang, H. Y.; Hu, C. Y.; Malola, S.; Lin, S. C.; Teo, B. K.; Hakkinen, H.; Zheng, N. F. Asymmetric synthesis of chiral bimetallic [Ag28Cu12(SR)24]4- nanoclusters via ion pairing. J. Am. Chem. Soc. 2016, 138, 12751–12754.Google Scholar
  25. [25]
    Shen, H.; Mizuta, T. An atomically precise alkynyl-protected PtAg42 superatom nanocluster and its structural implications. Chem. Asian J. 2017, 12, 2904–2907.Google Scholar
  26. [26]
    Shen, H.; Mizuta, T. An alkynyl-stabilized Pt5Ag22 cluster featuring a two-dimensional alkynyl-platinum “crucifix motif ”. Chem. Eur. —J. 2017, 23, 17885–17888.Google Scholar
  27. [27]
    He, L. Z.; Yuan, J. Y.; Xia, N.; Liao, L. W.; Liu, X.; Gan, Z. B.; Wang, C. M.; Yang, J. L.; Wu, Z. K. Kernel tuning and nonuniform influence on optical and electrochemical gaps of bimetal nanoclusters. J. Am. Chem. Soc. 2018, 140, 3487–3490.Google Scholar
  28. [28]
    Guan, Z. J.; Zeng, J. L.; Yuan, S. F.; Hu, F.; Lin, Y. M.; Wang, Q. M. Au57Ag53(C=CPh)40Br12: A large nanocluster with C1 symmetry. Angew. Chem., Int. Ed. 2018, 57, 5703–5707.Google Scholar
  29. [29]
    Dharmaratne, A. C.; Dass, A. Au144-xCux(SC6H13)60 nanomolecules: Effect of Cu incorporation on composition and plasmon-like peak emergence in optical spectra. Chem. Commun. 2014, 50, 1722–1724.Google Scholar
  30. [30]
    Kang, X.; Xiong, L.; Wang, S. X.; Pei, Y.; Zhu, M. Z. Combining the single-atom engineering and ligand-exchange strategies: Obtaining the single-heteroatom-doped Au16Ag1(S-Adm)13 nanocluster with atomically precise structure. Inorg. Chem. 2018, 57, 335–342.Google Scholar
  31. [31]
    Wang, S. X.; Abroshan, H.; Liu, C.; Luo, T. Y.; Zhu, M. Z.; Kim, H. J.; Rosi, N. L.; Jin, R. C. Shuttling single metal atom into and out of a metal nanoparticle. Nat. Commun. 2017, 8, 848.Google Scholar
  32. [32]
    Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.Google Scholar
  33. [33]
    Lin, Y. R.; Kishore, P. V. V. N.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu, C. W. Synthesis, structural characterization and transformation of an eight-electron superatomic alloy, [Au@Ag19{S2P(OPr)2}12]. Nanoscale 2018, 10, 6855–6860.Google Scholar
  34. [34]
    Kang, X.; Xiong, L.; Wang, S. X.; Pei, Y.; Zhu, M. Z. De-assembly of assembled Pt1Ag12 units: Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Commun. 2017, 53, 12564–12567.Google Scholar
  35. [35]
    Kang, X.; Zhou, M.; Wang, S. X.; Sun, G. D.; Zhu, M. Z.; Jin, R. C. The tetrahedral structure and luminescence properties of bi-metallic Pt1Ag28(SR)18(PPh3)4 nanocluster. Chem. Sci. 2017, 8, 2581–2587.Google Scholar
  36. [36]
    Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Parida, M. R.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M.; Cavallo, L.; Basset, J. M. Direct versus ligand-exchange synthesis of [PtAg28(BDT)12(TPP)4]4- nanoclusters: Effect of a single-atom dopant on the optoelectronic and chemical properties. Nanoscale 2017, 9, 9529–9536.Google Scholar
  37. [37]
    Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Shkurenko, A.; El-Zohry, A. M.; Mohammed, O. F.; Eddaoudi, M.; Bakr, O. M.; Cavallo, L.; Basset, J. M. Tailoring the crystal structure of nanoclusters unveiled high photoluminescence via ion pairing. Chem. Mater. 2018, 30, 2719–2725.Google Scholar
  38. [38]
    Kang, X.; Xiong, L.; Wang, S. X.; Yu, H. Z.; Jin, S.; Song, Y. B.; Chen, T.; Zheng, L. W.; Pan, C. S.; Pei, Y. et al. Shape-controlled synthesis of trimetallic nanoclusters: Structure elucidation and properties investigation. Chem. Eur. — J. 2016, 22, 17145–17150.Google Scholar
  39. [39]
    Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A 2008, 64, 112–122.Google Scholar
  40. [40]
    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C 2015, C71, 3–8.Google Scholar
  41. [41]
    Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.Google Scholar
  42. [42]
    AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Del Gobbo, S.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D. E.; Bakr, O. M. Ag29(BDT)12(TPP)4: A tetravalent nanocluster. J. Am. Chem. Soc. 2015, 137, 11970–11975.Google Scholar
  43. [43]
    Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerenefunctionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60)n]3- (n = 1–9). ACS Nano 2018, 12, 2415–2425.Google Scholar
  44. [44]
    Juarez-Mosqueda, R.; Malola, S.; Häkkinen, H. Stability, electronic structure, and optical properties of protected gold-doped silver Ag29-xAux (x = 0–5) nanoclusters. Phys. Chem. Chem. Phys. 2017, 19, 13868–13874.Google Scholar
  45. [45]
    Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed. 2016, 55, 5749–5753.Google Scholar
  46. [46]
    Guo, Z. Q.; Park, S.; Yoon, J.; Shin, I. Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem. Soc. Rev. 2014, 43, 16–29.Google Scholar
  47. [47]
    Wang, Y.; Dai, C.; Yan, X. P. Fabrication of folate bioconjugated near-infrared fluorescent silver nanoclusters for targeted in vitro and in vivo bioimaging. Chem. Commun. 2014, 50, 14341–14344.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gold Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.College of Environmental and Chemical EngineeringYanshan UniversityQinhuangdaoChina
  3. 3.Laboratory of High-Resolution Mass Spectrometry Technologies, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  4. 4.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations