Nano Research

, Volume 12, Issue 2, pp 289–297 | Cite as

Random lasing detection of structural transformation and compositions in silk fibroin scaffolds

  • SungYeun Yang
  • Soocheol Kim
  • HyeIn Shin
  • Seung Ho Choi
  • Young L. Kim
  • Chulmin JooEmail author
  • WonHyoung RyuEmail author
Research Article


In tissue engineering, microstructure and material composition of tissue scaffolds have major influences on the proliferation and differentiation of cells in the scaffolds. However, once tissue scaffolds implanted, it is extremely difficult to monitor the change of their microstructure and compositions during tissue regeneration. Here, we report how random lasing can be utilized to non-invasively monitor the structure and composition of scaffolds. We hypothesize that morphological and compositional change of silk fibroin (SF) scaffolds can be conveniently detected based on random lasing responses. Engineered SF scaffolds with hydroxyapatite (HAP) nanoparticles and controlled pore alignment were fabricated, and their random lasing responses were analyzed depending on the concentration of HAP nanoparticles and the degree of internal pore alignment. We also examined the real-time random lasing responses of porous SF scaffolds by applying a compressive force to the scaffolds. Introduction of HAP nanoparticles lowered the lasing thresholds and narrowed the random lasing (RL) width dramatically, which is likely due to the increase in heterogeneity in both refractive index and physical arrangement within the SF and HAP composites. The strong dependency of RL response on pore alignment was also measured and validated by numerical calculation with the finite element method (FEM). Finally, real-time monitoring of RL on compressed scaffolds demonstrated the possibility of using RL as a monitoring tool for structural change of SF scaffolds in vivo.


random lasing silk fibroin porous scaffolds aligned pore structure electrospinning hydroxyapatite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the research program of the National Research Foundation of Korea (NRF) (NRF-2015R1A5A1037668).


  1. [1]
    Yang, Y. M.; Chen, X. M.; Ding, F.; Zhang, P. Y.; Liu, J.; Gu, X. S. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 2007, 28, 1643–1652.CrossRefGoogle Scholar
  2. [2]
    Tao, H.; Kaplan, D. L.; Omenetto, F. G. Silk materials-A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837.CrossRefGoogle Scholar
  3. [3]
    Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J. S.; Lu, H. L.; Richmond, J.; Kaplan, D. L. Silk-based biomaterials. Biomaterials 2003, 24, 401–416.CrossRefGoogle Scholar
  4. [4]
    Vepari, C.; Kaplan, D. L. Silk as a biomaterial. Prog. Polym. Sci. 2007, 32, 991–1007.CrossRefGoogle Scholar
  5. [5]
    Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631.CrossRefGoogle Scholar
  6. [6]
    Magoshi, J.; Magoshi, Y.; Nakamura, S. Physical properties and structure of silk. VII. Crystallization of amorphous silk fibroin induced by immersion in methanol. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 185–186.Google Scholar
  7. [7]
    Yang, S. Y.; Hwang, T. H.; Che, L. H.; Oh, J. S.; Ha, Y.; Ryu, W. Membrane-reinforced three-dimensional electrospun silk fibroin scaffolds for bone tissue engineering. Biomed. Mater. 2015, 10, 035011.CrossRefGoogle Scholar
  8. [8]
    Karageorgiou, V.; Meinel, L.; Hofmann, S.; Malhotra, A.; Volloch, V.; Kaplan, D. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. J. Biomed. Mater. Res. A 2004, 71, 528–537.CrossRefGoogle Scholar
  9. [9]
    Yan, L. P.; Oliveira, J. M.; Oliveira, A. L.; Caridade, S. G.; Mano, J. F.; Reis, R. L. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Acta Biomater. 2012, 8, 289–301.CrossRefGoogle Scholar
  10. [10]
    Li, C. M.; Vepari, C.; Jin, H. J.; Kim, H. J.; Kaplan, D. L. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 2006, 27, 3115–3124.CrossRefGoogle Scholar
  11. [11]
    Amsden, J. J.; Domachuk, P.; Gopinath, A.; White, R. D.; Negro, L. D.; Kaplan, D. L.; Omenetto, F. G. Rapid nanoimprinting of silk fibroin films for biophotonic applications. Adv. Mater. 2010, 22, 1746–1749.CrossRefGoogle Scholar
  12. [12]
    Wang, C. H.; Hsieh, C. Y.; Hwang, J. C. Flexible organic thin-film transistors with silk fibroin as the gate dielectric. Adv. Mater. 2011, 23, 1630–1634.CrossRefGoogle Scholar
  13. [13]
    Applegate, M. B.; Marelli, B.; Kaplan, D. L.; Omenetto, F. G. Determination of multiphoton absorption of silk fibroin using the Z-scan technique. Opt. Express 2013, 21, 29637–29642.CrossRefGoogle Scholar
  14. [14]
    Parker, S. T.; Domachuk, P.; Amsden, J.; Bressner, J.; Lewis, J. A.; Kaplan, D. L.; Omenetto, F. G. Biocompatible silk printed optical waveguides. Adv. Mater. 2009, 21, 2411–2415.CrossRefGoogle Scholar
  15. [15]
    Toffanin, S.; Kim, S.; Cavallini, S.; Natali, M.; Benfenati, V.; Amsden, J. J.; Kaplan, D. L.; Zamboni, R.; Muccini, M.; Omenetto, F. G. Low-threshold blue lasing from silk fibroin thin films. Appl. Phys. Lett. 2012, 101, 091110.CrossRefGoogle Scholar
  16. [16]
    Applegate, M. B.; Perotto, G.; Kaplan, D. L.; Omenetto, F. G. Biocompatible silk step-index optical waveguides. Biomed. Opt. Express 2015, 6, 4221–4227.CrossRefGoogle Scholar
  17. [17]
    Caixeiro, S.; Gaio, M.; Marelli, B.; Omenetto, F. G.; Sapienza, R. Silk-based biocompatible random lasing. Adv. Opt. Mater. 2016, 4, 998–1003.CrossRefGoogle Scholar
  18. [18]
    Lawrence, B. D.; Cronin-Golomb, M.; Georgakoudi, I.; Kaplan, D. L.; Omenetto, F. G. Bioactive silk protein biomaterial systems for optical devices. Biomacromolecules 2008, 9, 1214–1220.CrossRefGoogle Scholar
  19. [19]
    Diao, Y. Y.; Liu, X. Y.; Toh, G. W.; Shi, L.; Zi, J. Multiple structural coloring of silk–fibroin photonic crystals and humidity-responsive color sensing. Adv. Funct. Mater. 2013, 23, 5373–5380.CrossRefGoogle Scholar
  20. [20]
    Letokhov, V. S. Generation of light by a scattering medium with negative resonance absorption. Sov. Phys. JETP 1968, 26, 835.Google Scholar
  21. [21]
    Pradhan, P.; Kumar, N. Localization of light in coherently amplifying random media. Phys. Rev. B 1994, 50, 9644–9647.CrossRefGoogle Scholar
  22. [22]
    Lawandy, N. M.; Balachandran, R. M.; Gomes, A. S. L.; Sauvain, E. Laser action in strongly scattering media. Nature 1994, 368, 436–438.CrossRefGoogle Scholar
  23. [23]
    Cao, H.; Zhao, Y. G.; Ho, S. T.; Seelig, E. W.; Wang, Q. H.; Chang, R. P. H. Random laser action in semiconductor powder. Phys. Rev. Lett. 1999, 82, 2278–2281.CrossRefGoogle Scholar
  24. [24]
    Noginov, M. A.; Caulfield, H. J.; Noginova, N. E.; Venkateswarlu, P. Line narrowing in the dye solution with scattering centers. Opt. Commun. 1995, 118, 430–437.CrossRefGoogle Scholar
  25. [25]
    Sha, W. L.; Liu, C. H.; Liu, F.; Alfano, R. R. Competition between two lasing modes of sulforhodamine 640 in highly scattering media. Opt. Lett. 1996, 21, 1277–1279.CrossRefGoogle Scholar
  26. [26]
    Yang, H. Y.; Yu, S. F.; Yan, J.; Zhang, L. D. Random lasing action from randomly assembled ZnS nanosheets. Nanoscale Res. Lett. 2010, 5, 809–812.CrossRefGoogle Scholar
  27. [27]
    Brito-Silva, A. M.; Galembeck, A.; Gomes, A. S. L.; Jesus-Silva, A. J.; de Araujo, C. B. Random laser action in dye solutions containing Stober silica nanoparticles. J. Appl. Phys. 2010, 108, 033508.CrossRefGoogle Scholar
  28. [28]
    Zhu, H.; Shan, C. X.; Zhang, J. Y.; Zhang, Z. Z.; Li, B. H.; Zhao, D. X.; Yao, B.; Shen, D. Z.; Fan, X. W.; Tang, Z. K. et al. Low-threshold electrically pumped random lasers. Adv. Mater. 2010, 22, 1877–1881.CrossRefGoogle Scholar
  29. [29]
    Wiersma, D. S. The physics and applications of random lasers. Nat. Phys. 2008, 4, 359–367.CrossRefGoogle Scholar
  30. [30]
    Polson, R. C.; Vardeny, Z. V. Random lasing in human tissues. Appl. Phys. Lett. 2004, 85, 1289–1291.CrossRefGoogle Scholar
  31. [31]
    Song, Q. H.; Xiao, S. M.; Xu, Z. B.; Liu, J. J.; Sun, X. H.; Drachev, V.; Shalaev, V. M.; Akkus, O.; Kim, Y. L. Random lasing in bone tissue. Opt. Lett. 2010, 35, 1425–1427.CrossRefGoogle Scholar
  32. [32]
    Wang, C. S.; Chang, T. Y.; Lin, T. Y.; Chen, Y. F. Biologically inspired flexible quasi-single-mode random laser: An integration of Pieris canidia butterfly wing and semiconductors. Sci. Rep. 2014, 4, 6736.CrossRefGoogle Scholar
  33. [33]
    Zhang, D. K.; Kostovski, G.; Karnutsch, C.; Mitchell, A. Random lasing from dye doped polymer within biological source scatters: The Pomponia imperatorial cicada wing random nanostructures. Org. Electron. 2012, 13, 2342–2345.CrossRefGoogle Scholar
  34. [34]
    Gather, M. C.; Yun, S. H. Single-cell biological lasers. Nat. Photonics 2011, 5, 406–410.CrossRefGoogle Scholar
  35. [35]
    Kim, S.; Yang, S.; Choi, S. H.; Kim, Y. L.; Ryu, W.; Joo, C. Random lasing from structurally-modulated silk fibroin nanofibers. Sci. Rep. 2017, 7, 4506.CrossRefGoogle Scholar
  36. [36]
    Etemad, S.; Thompson, R.; Andrejco, M. J. Weak localization of photons: Universal fluctuations and ensemble averaging. Phys. Rev. Lett. 1986, 57, 575–578.CrossRefGoogle Scholar
  37. [37]
    Kim, Y. L.; Liu, Y.; Turzhitsky, V. M.; Roy, H. K.; Wali, R. K.; Backman, V. Coherent backscattering spectroscopy. Opt. Lett. 2004, 29, 1906–1908.CrossRefGoogle Scholar
  38. [38]
    Andreasen, J.; Asatryan, A. A.; Botten, L. C.; Byrne, M. A.; Cao, H.; Ge, L.; Labonté, L.; Sebbah, P.; Stone, A. D.; Türeci, H. E. et al. Modes of random lasers. Adv. Opt. Photonics 2011, 3, 88–127.CrossRefGoogle Scholar
  39. [39]
    Kim, H.; Che, L. H.; Ha, Y.; Ryu, W. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles. Mater. Sci. Eng. C 2014, 40, 324–335.CrossRefGoogle Scholar
  40. [40]
    Van Albada, M. P.; Lagendijk, A. Observation of weak localization of light in a random medium. Phys. Rev. Lett. 1985, 55, 2692–2695.CrossRefGoogle Scholar
  41. [41]
    Wolf, P. E.; Maret, G. Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 1985, 55, 2696–2699.CrossRefGoogle Scholar
  42. [42]
    Wiersma, D. S.; Lagendijk, A. Light diffusion with gain and random lasers. Phys. Rev. E 1996, 54, 4256–4265.CrossRefGoogle Scholar
  43. [43]
    Luan, F.; Gu, B. B.; Gomes, A. S. L.; Yong, K. T.; Wen, S. C.; Prasad, P. N. Lasing in nanocomposite random media. Nano Today 2015, 10, 168–192.CrossRefGoogle Scholar
  44. [44]
    Wu, X.; Cao, H. Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems. Phys. Rev. A 2008, 77, 013832.CrossRefGoogle Scholar
  45. [45]
    Zhang, Q.; Zhao, Y. H.; Yan, S. Q.; Yang, Y. M.; Zhao, H. J.; Li, M. Z.; Lu, S. Z.; Kaplan, D. L. Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater. 2012, 8, 2628–2638.CrossRefGoogle Scholar
  46. [46]
    Tenopala-Carmona, F.; García-Segundo, C.; Cuando-Espitia, N.; Hernández- Cordero, J. Angular distribution of random laser emission. Opt. Lett. 2014, 39, 655–658.CrossRefGoogle Scholar
  47. [47]
    Zhang, R.; Knitter, S.; Liew, S. F.; Omenetto, F. G.; Reinhard, B. M.; Cao, H.; Dal Negro, L. Plasmon-enhanced random lasing in bio-compatible networks of cellulose nanofibers. Appl. Phys. Lett. 2016, 108, 011103.CrossRefGoogle Scholar
  48. [48]
    Gaikwad, P.; Bachelard, N.; Sebbah, P.; Backov, R.; Vallée, R. A. L. Competition and coexistence of Raman and random lasing in silica-/titania-based solid foams. Adv. Opt. Mater. 2015, 3, 1640–1651.CrossRefGoogle Scholar
  49. [49]
    Cyprych, K.; Sznitko, L.; Mysliwiec, J. Starch: Application of biopolymer in random lasing. Org. Electron. 2014, 15, 2218–2222.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • SungYeun Yang
    • 1
  • Soocheol Kim
    • 1
  • HyeIn Shin
    • 1
  • Seung Ho Choi
    • 2
  • Young L. Kim
    • 2
  • Chulmin Joo
    • 1
    Email author
  • WonHyoung Ryu
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringYonsei UniversitySeoulRepublic of Korea
  2. 2.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations