Advertisement

Synthesis of MoX2 (X = Se or S) monolayers with high-concentration 1T′ phase on 4H/fcc-Au nanorods for hydrogen evolution

  • Zhengqing Liu
  • Xiao Zhang
  • Yue Gong
  • Qipeng Lu
  • Zhicheng Zhang
  • Hongfei Cheng
  • Qinglang Ma
  • Junze Chen
  • Meiting Zhao
  • Bo Chen
  • Ye Chen
  • Xue-Jun Wu
  • Pengfei Yin
  • Lin Gu
  • Yaping Du
  • Hua Zhang
Research Article

Abstract

Controlled synthesis of transition metal dichalcogenide (TMD) monolayers with unusual crystal phases has attracted increasing attention due to their promising applications in electrocatalysis. However, the facile and large-scale preparation of TMD monolayers with high-concentration unusual crystal phase still remains a challenge. Herein, we report the synthesis of MoX2 (X = Se or S) monolayers with high-concentration semimetallic 1T′ phase by using the 4H/face-centered cubic (fcc)-Au nanorod as template to form the 4H/fcc-Au@MoX2 nanocomposite. The concentrations of 1T′ phase in the prepared MoSe2 and MoS2 monolayers are up to 86% and 81%, respectively. As a proof-of-concept application, the obtained Au@MoS2 nanocomposite is used for the electrocatalytic hydrogen evolution reaction (HER) in acid medium, exhibiting excellent performance with a low overpotential of 178 mV at the current density of 10 mA/cm2, a small Tafel slope of 43.3 mV/dec, and excellent HER stability. This work paves a way for direct synthesis of TMD monolayers with high-concentration of unusual crystal phase for the electrocatalytic application.

Keywords

MoS2 monolayers semimetallic 1T′ phase 4H/fcc-Au nanorods hydrogen evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by MOE under AcRF Tier 2 (Nos. MOE2014-T2-2-093, MOE2015-T2-2-057, MOE2016-T2-2-103, and MOE2017-T2-1-162) and AcRF Tier 1 (Nos. 2016-T1-001-147, 2016-T1-002-051, 2017-T1-001-150, and 2017-T1-002-119), and NTU under Start-Up Grant (No. M4081296.070.500000) in Singapore. We would like to acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore, for use of their electron microscopy (and/or X-ray) facilities.

Supplementary material

12274_2018_2212_MOESM1_ESM.pdf (4.1 mb)
Electronic Supplementary Material

References

  1. [1]
    Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.CrossRefGoogle Scholar
  2. [2]
    Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. Nano Lett. 2014, 14, 553–558.CrossRefGoogle Scholar
  3. [3]
    Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.CrossRefGoogle Scholar
  4. [4]
    Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.CrossRefGoogle Scholar
  5. [5]
    Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.CrossRefGoogle Scholar
  6. [6]
    Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.CrossRefGoogle Scholar
  7. [7]
    Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.CrossRefGoogle Scholar
  8. [8]
    Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.CrossRefGoogle Scholar
  9. [9]
    Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.CrossRefGoogle Scholar
  10. [10]
    Mahler, B.; Hoepfner, V.; Liao, K.; Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: Applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14121–14127.CrossRefGoogle Scholar
  11. [11]
    Chou, S. S.; Sai, N.; Lu, P.; Coker, E. N.; Liu, S.; Artyushkova, K.; Luk, T. S.; Kaehr, B.; Brinker, C. J. Understanding catalysis in a multiphasic twodimensional transition metal dichalcogenide. Nat. Commun. 2015, 6, 8311.CrossRefGoogle Scholar
  12. [12]
    Zhang, J.; Wu, J. J.; Guo, H.; Chen, W. B.; Yuan, J. T.; Martinez, U.; Gupta, G.; Mohite, A.; Ajayan, P. M.; Lou, J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2. Adv. Mater. 2017, 29, 1701955.CrossRefGoogle Scholar
  13. [13]
    Tan, S. J. R.; Abdelwahab, I.; Ding, Z. J.; Zhao, X. X.; Yang, T. S.; Loke, G. Z. J.; Lin, H.; Verzhbitskiy, I.; Poh, S. M.; Xu, H. et al. Chemical stabilization of 1T′ phase transition metal dichalcogenides with giant optical Kerr nonlinearity. J. Am. Chem. Soc. 2017, 139, 2504–2511.CrossRefGoogle Scholar
  14. [14]
    Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.CrossRefGoogle Scholar
  15. [15]
    Tan, Y. W.; Liu, P.; Chen, L. Y.; Cong, W. T.; Ito, Y.; Han, J. H.; Guo, X. W.; Tang, Z.; Fujita, T.; Hirata, A. et al. Monolayer MoS2 films supported by 3D nanoporous metals for high-efficiency electrocatalytic hydrogen production. Adv. Mater. 2014, 26, 8023–8028.CrossRefGoogle Scholar
  16. [16]
    Shi, J. P.; Yang, Y.; Zhang, Y.; Ma, D. L.; Wei, W.; Ji, Q. Q.; Zhang, Y. S.; Song, X. J.; Gao, T.; Li, C. et al. Monolayer MoS2 growth on Au foils and on-site domain boundary imaging. Adv. Funct. Mater. 2015, 25, 842–849.CrossRefGoogle Scholar
  17. [17]
    Shi, J. P.; Ma, D. L.; Han, G. F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.CrossRefGoogle Scholar
  18. [18]
    Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.CrossRefGoogle Scholar
  19. [19]
    Hu, J.; Huang, B. L.; Zhang, C. X.; Wang, Z. L.; An, Y. M.; Zhou, D.; Lin, H.; Leung, M. K. H.; Yang, S. H. Engineering stepped edge surface structures of MoS2 sheet stacks to accelerate the hydrogen evolution reaction. Energy Environ. Sci. 2017, 10, 593–603.CrossRefGoogle Scholar
  20. [20]
    Abid, I.; Chen, W. B.; Yuan, J. T.; Bohloul, A.; Najmaei, S.; Avendano, C.; Péchou, R.; Mlayah, A.; Lou, J. Temperature-dependent plasmon–exciton interactions in hybrid Au/MoSe2 nanostructures. ACS Photonics 2017, 4, 1653–1660.CrossRefGoogle Scholar
  21. [21]
    Lu, Q. P.; Wang, A. L.; Gong, Y.; Hao, W.; Cheng, H. F.; Chen, J. Z.; Li, B.; Yang, N. L.; Niu, W. X.; Wang, J. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 2018, 10, 456–461.CrossRefGoogle Scholar
  22. [22]
    Hu, T.; Li, R.; Dong, J. M. A new (2 × 1) dimerized structure of monolayer 1T-molybdenum disulfide, studied from first principles calculations. J. Chem. Phys. 2013, 139, 174702.CrossRefGoogle Scholar
  23. [23]
    Jung, W.; Lee, S.; Yoo, D.; Jeong, S.; Miró, P.; Kuc, A.; Heine, T.; Cheon, J. Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. J. Am. Chem. Soc. 2015, 137, 7266–7269.CrossRefGoogle Scholar
  24. [24]
    Naz, M.; Hallam, T.; Berner, N. C.; McEvoy, N.; Gatensby, R.; McManus, J. B.; Akhter, Z.; Duesberg, G. S. A new 2H-2H′/1T cophase in polycrystalline MoS2 and MoSe2 thin films. ACS Appl. Mater. Interfaces 2016, 8, 31442–31448.CrossRefGoogle Scholar
  25. [25]
    Yin, Y.; Zhang, Y. M.; Gao, T. L.; Yao, T.; Zhang, X. H.; Han, J. C.; Wang, X. J.; Zhang, Z. H.; Xu, P.; Zhang, P. et al. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 2017, 29, 1700311.CrossRefGoogle Scholar
  26. [26]
    Li, Y.; Cain, J. D.; Hanson, E. D.; Murthy, A. A.; Hao, S. Q.; Shi, F. Y.; Li, Q. Q.; Wolverton, C.; Chen, X. Q.; Dravid, V. P. Au@MoS2 core–shell heterostructures with strong light–matter interactions. Nano Lett. 2016, 16, 7696–7702.CrossRefGoogle Scholar
  27. [27]
    Chou, S. S.; Huang, Y. K.; Kim, J.; Kaehr, B.; Foley, B. M.; Lu, P.; Dykstra, C.; Hopkins, P. E.; Brinker, C. J.; Huang, J. X. et al. Controlling the metal to semiconductor transition of MoS2 and WS2 in solution. J. Am. Chem. Soc. 2015, 137, 1742–1745.CrossRefGoogle Scholar
  28. [28]
    Chen, S.; Duan, J. J.; Tang, Y. H.; Jin, B.; Qiao, S. Z. Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 2015, 11, 11–18.CrossRefGoogle Scholar
  29. [29]
    Liu, J. L.; Zheng, Y.; Zhu, D. D.; Vasileff, A.; Ling, T.; Qiao, S. Z. Identification of pH-dependent synergy on Ru/MoS2 interface: A comparison of alkaline and acidic hydrogen evolution. Nanoscale 2017, 9, 16616–16621.CrossRefGoogle Scholar
  30. [30]
    Yin, X. M.; Wang, Q. X.; Cao, L.; Tang, C. S.; Luo, X.; Zheng, Y. J.; Wong, L. M.; Wang, S. J.; Quek, S. Y.; Zhang, W. J. et al. Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nat. Commun. 2017, 8, 486.CrossRefGoogle Scholar
  31. [31]
    Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370.CrossRefGoogle Scholar
  32. [32]
    Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.CrossRefGoogle Scholar
  33. [33]
    Liu, Z. Q.; Li, N.; Su, C.; Zhao, H. Y.; Xu, L. L.; Yin, Z. Y.; Li, J.; Du, Y. P. Colloidal synthesis of 1T′ phase dominated WS2 towards endurable electrocatalysis. Nano Energy 2018, 50, 176–181.CrossRefGoogle Scholar
  34. [34]
    Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun. 2015, 6, 7493.CrossRefGoogle Scholar
  35. [35]
    Gu, C.; Hu, S. J.; Zheng, X. S.; Gao, M. R.; Zheng, Y. R.; Shi, L.; Gao, Q.; Zheng, X.; Chu, W. S.; Yao, H. B. et al. Synthesis of sub-2 nm iron-doped NiSe2 nanowires and their surface-confined oxidation for oxygen evolution catalysis. Angew. Chem., Int. Ed. 2018, 57, 4020–4024.CrossRefGoogle Scholar
  36. [36]
    Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.CrossRefGoogle Scholar
  37. [37]
    Kibsgaard, J.; Jaramillo, T. F. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 14433–14437.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhengqing Liu
    • 1
    • 2
  • Xiao Zhang
    • 2
  • Yue Gong
    • 3
    • 4
  • Qipeng Lu
    • 2
  • Zhicheng Zhang
    • 2
  • Hongfei Cheng
    • 2
  • Qinglang Ma
    • 2
  • Junze Chen
    • 2
  • Meiting Zhao
    • 2
  • Bo Chen
    • 2
  • Ye Chen
    • 2
  • Xue-Jun Wu
    • 2
  • Pengfei Yin
    • 2
  • Lin Gu
    • 3
    • 4
    • 5
  • Yaping Du
    • 1
  • Hua Zhang
    • 2
  1. 1.School of Materials Science and Engineering & National Institute for Advanced MaterialsNankai UniversityTianjinChina
  2. 2.Center for Programmable Materials, School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  4. 4.School of Physical SciencesUniversity of Chinese Academy of SciencesBeijingChina
  5. 5.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations