Advertisement

Nano Research

, Volume 12, Issue 2, pp 247–264 | Cite as

Graphene-based nanomaterials in biosystems

  • Na Lu
  • Liqian Wang
  • Min Lv
  • Zisheng TangEmail author
  • Chunhai FanEmail author
Review Article
  • 368 Downloads

Abstract

Graphene-based nanomaterials have emerged as a novel type of materials with exceptional physicochemical properties and numerous applications in various areas. In this review, we summarize recent advances in studying interactions between graphene and biosystems. We first provide a brief introduction on graphene and its derivatives, and then discuss on the toxicology and biocompatibility of graphene, including the extracellular interactions between graphene and biomacromolecules, cellular studies of graphene, and in vivo toxicological effects. Next, we focus on various graphene-based practical applications in antibacterial materials, wound addressing, drug delivery, and water purification. We finally present perspectives on challenges and future developments in these exciting fields.

Keywords

graphene-based nanomaterials toxicology and biocompatibility biomacromolecules cells living entities applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program (No. 2016YFA0201200), the Shanghai Municipal Natural Science Foundation (No. 17ZR1412100), the Key Laboratory of Interfacial Physics and Technology, the Chinese Academy of Sciences (No. CASKL-IPT1603), the Talent Program of Shanghai University of Engineering Science, the Startup Foundation for Doctors of Shanghai University of Engineering Science, and the National Natural Science Foundation of China (Nos. 81870749, 21373260, 31470960 and 51375294).

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.Google Scholar
  2. [2]
    Huang, X.; Yin, Z. Y.; Wu, S. X.; Qi, X. Y.; He, Q. Y.; Zhang, Q. C.; Yan, Q. Y.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.Google Scholar
  3. [3]
    Hu, X. G.; Zhou, Q. X. Health and ecosystem risks of graphene. Chem. Rev. 2013, 113, 3815–3835.Google Scholar
  4. [4]
    Tang, L.H.; Wang, Y.; Li, J. H. The graphene/nucleic acid nanobiointerface. Chem. Soc. Rev. 2015, 44, 6954–6580.Google Scholar
  5. [5]
    Zheng, H. Z.; Ma, R. L.; Gao, M.; Tian, X.; Li, Y. Q.; Zeng, L. W.; Li, R. B. Antibacterial applications of graphene oxides: Structure-activity relationships, molecular initiating events and biosafety. Sci. Bull. 2018, 63, 133–142.Google Scholar
  6. [6]
    Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.Google Scholar
  7. [7]
    Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356–358.Google Scholar
  8. [8]
    Slota, M.; Keerthi, A.; Myers, W. K.; Tretyakov, E.; Baumgarten, M.; Ardavan, A.; Sadeghi, H.; Lambert, C. J.; Narita, A.; Müllen, K. et al. Magnetic edge states and coherent manipulation of graphene nanoribbons. Nature 2018, 557, 691–695.Google Scholar
  9. [9]
    Rozploch, F.; Patyk, J.; Stankowski, J. Graphenes bonding forces in graphite. Acta Phys. Pol. A 2007, 112, 557–562.Google Scholar
  10. [10]
    Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.Google Scholar
  11. [11]
    Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.Google Scholar
  12. [12]
    Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.Google Scholar
  13. [13]
    Chen, C. Y.; Avila, J.; Arezki, H.; Nguyen, V. L.; Shen, J. H.; Mucha- Kruczynski, M.; Yao, F.; Boutchich, M.; Chen, Y.; Lee, Y. H. et al. Large local lattice expansion in graphene adlayers grown on copper. Nat. Mater. 2018, 17, 450–455.Google Scholar
  14. [14]
    Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.Google Scholar
  15. [15]
    Zhang, L. C.; Shi, Z. W.; Liu, D. H.; Yang, R.; Shi, D. X.; Zhang, G. Y. Vapour-phase graphene epitaxy at low temperatures. Nano Res. 2012, 5, 258–264.Google Scholar
  16. [16]
    Shao, Y.; Liu, Z. L.; Cheng, C.; Wu, X.; Liu, H.; Liu, C.; Wang, J. O.; Zhu, S. Y.; Wang, Y. Q.; Shi, D. X. et al. Epitaxial growth of flat antimonene monolayer: A new honeycomb analogue of graphene. Nano Lett. 2018, 18, 2133–2139.Google Scholar
  17. [17]
    Hummers, W. S. H. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.Google Scholar
  18. [18]
    Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457–460.Google Scholar
  19. [19]
    Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.Google Scholar
  20. [20]
    Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.Google Scholar
  21. [21]
    Voiry, D.; Yang, J.; Kupferberg, J.; Fullon, R.; Lee, C.; Jeong, H. Y.; Shin, H. S.; Chhowalla, M. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide. Science 2016, 353, 1413–1416.Google Scholar
  22. [22]
    Nam, J. M.; Thaxton, C. S.; Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 2003, 301, 1884–1886.Google Scholar
  23. [23]
    Wang, P. J.; Wan, Y.; Ali, A.; Deng, S. Y.; Su, Y.; Fan, C. H.; Yang, S. L. Aptamer-wrapped gold nanoparticles for the colorimetric detection of omethoate. Sci. China Chem. 2016, 59, 237–242.Google Scholar
  24. [24]
    Katz, E.; Willner, I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem., Int. Ed. 2004, 43, 6042–6108.Google Scholar
  25. [25]
    Xu, Y.; Zhao, Y.; Zhang, Y. J.; Cui, Z. F.; Wang, L. H.; Fan, C. H.; Gao, J. M.; Sun, Y. H. Angiopep-2-conjugated Ag2S quantum dot for NIR-II imaging of brain tumors. Acta Chim. Sin. 2018, 76, 393–399.Google Scholar
  26. [26]
    Cui, X. H.; Chen, H. Y.; Yang, T. Research progress on the preparation and application of nano-sized molybdenum disulfide. Acta Chim. Sin. 2016, 74, 392–400.Google Scholar
  27. [27]
    Lu, N.; Gao, A. R.; Dai, P. F.; Song, S. P.; Fan, C. H.; Wang, Y. L.; Li, T. CMOS-compatible silicon nanowire field-effect transistors for ultrasensitive and label-free microRNAs sensing. Small 2014, 10, 2022–2028.Google Scholar
  28. [28]
    Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera- Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S. et al. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.Google Scholar
  29. [29]
    Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113.Google Scholar
  30. [30]
    Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.Google Scholar
  31. [31]
    Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266.Google Scholar
  32. [32]
    Cao, A. N.; Liu, Z.; Chu, S. S.; Wu, M. H.; Ye, Z. M.; Cai, Z. W.; Chang, Y. L.; Wang, S. F.; Gong, Q. H.; Liu, Y. F. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.Google Scholar
  33. [33]
    Ji, H. W.; Sun, H. J.; Qu, X. G. Antibacterial applications of graphenebased nanomaterials: Recent achievements and challenges. Adv. Drug Deliver. Rev. 2016, 105, 176–189.Google Scholar
  34. [34]
    Liu, J. W.; Cao, Z. H.; Lu, Y. Functional nucleic acid sensors. Chem. Rev. 2009, 109, 1948–1998.Google Scholar
  35. [35]
    Ge, Z. L.; Pei, H.; Wang, L. H.; Song, S. P.; Fan, C. H. Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Sci. China Chem. 2011, 54, 1273.Google Scholar
  36. [36]
    Seeman, N. C. DNA in a material world. Nature 2003, 421, 427–431.Google Scholar
  37. [37]
    Zhang, H. Z.; Zhang, Z. Q.; Wang, F.; Zhou, T.; Wang, X. F.; Zhang, G. D.; Liu, T. T.; Liu, S. Z. Application of structural DNA nanotechnology. Acta Phys. Chim. Sin. 2017, 33, 1520–1532.Google Scholar
  38. [38]
    Pinheiro, A. V.; Han, D. R.; Shih, W. M.; Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 2011, 6, 763–772.Google Scholar
  39. [39]
    Ye, D. K.; Zuo, X. L.; Fan, C. H. DNA nanostructure-based engineering of the biosensing interface for biomolecular detection. Prog. Chem. 2017, 29, 36–46.Google Scholar
  40. [40]
    Liu, D. G.; Park, S. H.; Reif, J. H.; LaBean, T. H. DNA nanotubes selfassembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl. Acad. Sci. USA 2004, 101, 717–722.Google Scholar
  41. [41]
    Lin, C. X.; Katilius, E.; Liu, Y.; Zhang, J. P.; Yan, H. Self-assembled signaling aptamer DNA arrays for protein detection. Angew. Chem., Int. Ed. 2006, 45, 5296–5301.Google Scholar
  42. [42]
    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.Google Scholar
  43. [43]
    Chao, J.; Zhang, Y. N.; Zhu, D.; Liu, B.; Cui, C. J.; Su, S.; Fan, C. H.; Wang, L. H. Hetero-assembly of gold nanoparticles on a DNA origami template. Sci. China Chem. 2016, 59, 730–734.Google Scholar
  44. [44]
    Han, D. R.; Pal, S.; Nangreave, J.; Deng, Z. T.; Liu, Y.; Yan, H. DNA origami with complex curvatures in three-dimensional space. Science 2011, 332, 342–346.Google Scholar
  45. [45]
    Fan, C. H.; Fang, X. H. Special topic for “single-molecule, single-particle and single-cell bioimaging”. Sci. China Chem. 2017, 60, 1265–1266.Google Scholar
  46. [46]
    Gao, Z. S.; Deng, S. H.; Li, J.; Wang, K.; Li, J. J.; Wang, L. H.; Fan, C. H. Sub-diffraction-limit cell imaging using a super-resolution microscope with simplified pulse synchronization. Sci. China Chem. 2017, 60, 1305–1309.Google Scholar
  47. [47]
    Wang, S. P.; Deng, S. H.; Cai, X. Q.; Hou, S. G.; Li, J. J.; Gao, Z. S.; Li, J.; Wang, L. H.; Fan, C. H. Superresolution imaging of telomeres with continuous wave stimulated emission depletion (STED) microscope. Sci. China Chem. 2016, 59, 1519–1524.Google Scholar
  48. [48]
    Liu, Q.; Sun, Y.; Yang, T. S.; Feng, W.; Li, C. G.; Li, F. Y. Sub-10 nm hexagonal lanthanide-doped NaLuF4 upconversion nanocrystals for sensitive bioimaging in vivo. J. Am. Chem. Soc. 2016, 133, 17122–17125.Google Scholar
  49. [49]
    Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.Google Scholar
  50. [50]
    Dreaden, E. C.; Alkilany, A. M.; Huang, X. H.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.Google Scholar
  51. [51]
    Su, Y. Y.; Peng, T. H.; Xing, F. F.; Li, D.; Fan, C. H. Nanoplasmonic biological sensing and imaging. Acta Chim. Sin. 2017, 75, 1036–1046.Google Scholar
  52. [52]
    Long, Y. T.; Fan, C. H. Nanosensors. Acta Chim. Sin. 2017, 75, 1021–1022.Google Scholar
  53. [53]
    Chao, J.; Fan, C. H. A photoelectrochemical sensing strategy for biomolecular detection. Sci. China Chem. 2015, 58, 834.Google Scholar
  54. [54]
    Patil, A. J.; Vickery, J. L.; Scott, T. B.; Mann, S. Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv. Mater. 2009, 21, 3159–3164.Google Scholar
  55. [55]
    Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed. 2009, 48, 4785–4787.Google Scholar
  56. [56]
    He, S. J.; Song, B.; Li, D.; Zhu, C. F.; Qi, W. P.; Wen, Y. Q.; Wang, L. H.; Song, S. P.; Fang, H. P.; Fan, C. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater. 2010, 20, 453–459.Google Scholar
  57. [57]
    Chang, H. X.; Tang, L. H.; Wang, Y.; Jiang, J. H.; Li, J. H. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 2010, 82, 2341–2346.Google Scholar
  58. [58]
    Wu, M.; Kempaiah, R.; Huang, P. J. J.; Maheshwari, V.; Liu, J. W. Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 2011, 27, 2731–2738.Google Scholar
  59. [59]
    Kotikam, V.; Fernandes, M.; Kumar, V. A. Comparing the interactions of DNA, polyamide (PNA) and polycarbamate nucleic acid (PCNA) oligomers with graphene oxide (GO). Phys. Chem. Chem. Phys. 2012, 14, 15003–15006.Google Scholar
  60. [60]
    Cui, L.; Chen, Z. R.; Zhu, Z.; Lin, X. Y.; Chen, X.; Yang, C. J. Stabilization of ssRNA on graphene oxide surface: An effective way to design highly robust RNA probes. Anal. Chem. 2013, 85, 2269–2275.Google Scholar
  61. [61]
    Zhang, H.; Jia, S. S.; Lv, M.; Shi, J. Y.; Zuo, X. L.; Su, S.; Wang, L. H.; Huang, W.; Fan, C. H.; Huang, Q. Size-dependent programming of the dynamic range of graphene oxide-DNA interaction-based ion sensors. Anal. Chem. 2014, 86, 4047–4051.Google Scholar
  62. [62]
    Xu, S. C.; Zhan, J.; Man, B. Y.; Jiang, S. Z.; Yue, W. W.; Gao, S. B.; Guo, C. G.; Liu, H. P.; Li, Z. H.; Wang, J. H. et al. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Commun. 2017, 8, 14902.Google Scholar
  63. [63]
    Heerema, S. J.; Vicarelli, L.; Pud, S.; Schouten, R. N.; Zandbergen, H. W.; Dekker, C. Probing DNA translocations with inplane current signals in a graphene nanoribbon with a nanopore. ACS Nano 2018, 12, 2623–2633.Google Scholar
  64. [64]
    Pei, H.; Li, J.; Lv, M.; Wang, J. Y.; Gao, J. M.; Lu, J. X.; Li, Y. P.; Huang, Q.; Hu, J.; Fan, C. H. A graphene-based sensor array for high-precision and adaptive target identification with ensemble aptamers. J. Am. Chem. Soc. 2012, 134, 13843–13849.Google Scholar
  65. [65]
    Feng, L. Y.; Li, W.; Ren, J. S.; Qu, X. G. Electrochemically and DNAtriggered cell release from ferrocene/β-cyclodextrin and aptamer modified dualfunctionalized graphene substrate. Nano Res. 2015, 8, 887–899.Google Scholar
  66. [66]
    Liu, M.; Song, J. P.; Shuang, S. M.; Dong, C.; Brennan, J. D.; Li, Y. F. A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano 2014, 8, 5564–5573.Google Scholar
  67. [67]
    Liu, S. Z.; Zhang, Z. Q.; Wang, F.; Zhou, T.; Wang, X. F.; Zhang, G. D.; Liu, T. T.; Zhang, H. Z. Study on the synthesis of DNA via rolling circle amplification. Acta Phys. Chim. Sin 2017, 33, 2052–2057.Google Scholar
  68. [68]
    Li, F.; Liu, X. G.; Zhao, B.; Yan, J.; Li, Q.; Aldalbahi, A.; Shi, J. Y.; Song, S. P.; Fan, C. H.; Wang, L. H. Graphene nanoprobes for real-time monitoring of isothermal nucleic acid amplification. ACS Appl. Mater. Interfaces 2017, 9, 15245–15253.Google Scholar
  69. [69]
    Liu, X. Q.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: Application for logic gate operations. ACS Nano 2012, 6, 3553–3563.Google Scholar
  70. [70]
    Tian, Y.; Wang, Y.; Xu, Y.; Liu, Y.; Li, D.; Fan, C. H. A highly sensitive chemiluminescence sensor for detecting mercury (II) ions: A combination of Exonuclease III-aided signal amplification and graphene oxide-assisted background reduction. Sci. China Chem 2015, 58, 514–518.Google Scholar
  71. [71]
    Gowtham, S.; Scheicher, R. H.; Ahuja, R.; Pandey, R.; Karna, S. P. Physisorption of nucleobases on graphene: Density-functional calculations. Phys. Rev. B 2007, 76, 033401.Google Scholar
  72. [72]
    Varghese, N.; Mogera, U.; Govindaraj, A.; Das, A.; Maiti, P. K.; Sood, A. K.; Rao, C. N. R. Binding of DNA nucleobases and nucleosides with graphene. Chemphyschem 2009, 10, 206–210.Google Scholar
  73. [73]
    Panigrahi, S.; Bhattacharya, A.; Banerjee, S.; Bhattacharyya, D. Interaction of nucleobases with wrinkled graphene surface: Dispersion corrected DFT and AFM studies. J. Phys. Chem. C 2012, 116, 4374–4379.Google Scholar
  74. [74]
    Zhang, Y. Y.; Li, M.; Li, Z. H.; Li, Q.; Aldalbahi, A.; Shi, J. Y.; Wang, L. H.; Fan, C. H.; Zuo, X. L. Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. Sci. China Chem. 2017, 60, 1474–1480.Google Scholar
  75. [75]
    Duan, X. X.; Li, Y.; Rajan, N. K.; Routenberg, D. A.; Modis, Y.; Reed, M. A. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat. Nanotechnol. 2012, 7, 401–407.Google Scholar
  76. [76]
    Li, J.; Kuang, Y.; Shi, J. F.; Zhou, J.; Medina, J. E.; Zhou, R.; Yuan, D.; Yang, C. H.; Wang, H. M.; Yang, Z. M. et al. Enzyme-instructed intracellular molecular self-assembly to boost activity of cisplatin against drug-resistant ovarian cancer cells. Angew. Chem., Int. Ed. 2015, 127, 13505–13509.Google Scholar
  77. [77]
    Jung, J. H.; Cheon, D. S.; Liu, F.; Lee, K. B.; Seo, T. S. A graphene oxide based immuno-biosensor for pathogen detection. Angew. Chem., Int. Ed. Int. Ed. 2010, 49, 5708–5711.Google Scholar
  78. [78]
    Wang, L. H.; Pu, K. Y.; Li, J.; Qi, X. Y.; Li, H.; Zhang, H.; Fan, C. H.; Liu, B. A graphene-conjugated oligomer hybrid probe for light-up sensing of lectin and Escherichia coli. Adv. Mater. 2011, 23, 4386–4391.Google Scholar
  79. [79]
    Chou, S. S.; De, M.; Luo, J. Y.; Rotello, V. M.; Huang, J. X.; Dravid, V. P. Nanoscale graphene oxide (nGO) as artificial receptors: Implications for biomolecular interactions and sensing. J. Am. Chem. Soc. 2012, 134, 16725–16733.Google Scholar
  80. [80]
    Tan, X. F.; Feng, L. Z.; Zhang, J.; Yang, K.; Zhang, S.; Liu, Z.; Peng, R. Functionalization of graphene oxide generates a unique interface for selective serum protein interactions. ACS Appl. Mater. Interaces 2013, 5, 1370–1377.Google Scholar
  81. [81]
    Gan, S. Y.; Zhong, L. J.; Han, D. X.; Niu, L.; Chi, Q. J. Probing bio-nano interactions between blood proteins and monolayer-stabilized graphene sheets. Small 2015, 11, 5814–5825.Google Scholar
  82. [82]
    Feng, B. Y.; Guo, L. J.; Wang, L. H.; Li, F.; Lu, J. X.; Gao, J. M.; Fan, C. H.; Huang, Q. A graphene oxide-based fluorescent biosensor for the analysis of peptide-receptor interactions and imaging in somatostatin receptor subtype 2 overexpressed tumor cells. Anal. Chem. 2013, 85, 7732–7737.Google Scholar
  83. [83]
    Zou, X. Q.; Wei, S.; Jasensky, J.; Xiao, M. Y.; Wang, Q. M.; Brooks, C. L.; Chen, Z. Molecular interactions between graphene and biological molecules. J. Am. Chem. Soc. 2017, 139, 1928–1936.Google Scholar
  84. [84]
    Chen, Y. J.; Chen, Z. H.; Sun, Y. X.; Lei, J. T.; Wei, G. H. Mechanistic insights into the inhibition and size effects of graphene oxide nanosheets on the aggregation of an amyloid-β peptide fragment. Nanoscale 2018, 10, 8989–8997.Google Scholar
  85. [85]
    Jang, H.; Ryoo, S. R.; Kim, Y. K.; Yoon, S.; Kim, H.; Han, S. W.; Choi, B. S.; Kim, D. E.; Min, D. H. Discovery of hepatitis C virus NS3 helicase inhibitors by a multiplexed, high-throughput helicase activity assay based on graphene oxide. Angew. Chem., Int. Ed. 2013, 52, 2340–2344.Google Scholar
  86. [86]
    Song, Z. Y.; Wang, X. Y.; Zhu, G. X.; Nian, Q. G.; Zhou, H. Y.; Yang, D.; Qin, C. F.; Tang, R. K. Virus capture and destruction by label-free graphene oxide for detection and disinfection applications. Small 2015, 11, 1171–1176.Google Scholar
  87. [87]
    Deokar, A. R.; Nagvenkar, A. P.; Kalt, I.; Shani, L.; Yeshurun, Y.; Gedanken, A.; Sarid, R. Graphene-based “hot plate” for the capture and destruction of the herpes simplex virus type 1. Bioconjugate Chem. 2017, 28, 1115–1122.Google Scholar
  88. [88]
    Sametband, M.; Kalt, I.; Gedanken, A.; Sarid, R. Herpes simplex virus type-1 attachment inhibition by functionalized graphene oxide. ACS Appl. Mater. Interfaces 2014, 6, 1228–1235.Google Scholar
  89. [89]
    Gholami, M. F.; Lauster, D.; Ludwig, K.; Storm, J.; Ziem, B.; Severin, N.; Böttcher, C.; Rabe, J. P.; Herrmann, A.; Adeli, M. et al. Functionalized graphene as extracellular matrix mimics: Toward well-defined 2D nanomaterials for multivalent virus interactions. Adv. Funct. Mater. 2017, 27, 1606477.Google Scholar
  90. [90]
    Zhan, L.; Li, C. M.; Wu, W. B.; Huang, C. Z. A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticlesgraphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem. Commun. 2014, 50, 11526–11528.Google Scholar
  91. [91]
    Afsahi, S.; Lerner, M. B.; Goldstein, J. M.; Lee, J.; Tang, X. L.; Bagarozzi, D. A. Jr.; Pan, D.; Locascio, L.; Walker, A.; Barron, F. et al. Novel graphene-based biosensor for early detection of Zika virus infection. Biosens. Bioelectron. 2018, 100, 85–88.Google Scholar
  92. [92]
    Lee, Y. M.; Jung, B.; Kim, Y. H.; Park, A. R.; Han, S.; Choe, W. S.; Yoo, P. J. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film. Adv. Mater. 2014, 26, 3899–3904.Google Scholar
  93. [93]
    Chen, H. Q.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557–3561.Google Scholar
  94. [94]
    Lee, W. C.; Lim, C. H. Y. X.; Shi, H.; Tang, L. A. L.; Wang, Y.; Lim, C. T.; Loh, K. P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 2011, 5, 7334–7341.Google Scholar
  95. [95]
    Rastogi, S. K.; Raghavan, G.; Yang, G.; Cohen-Karni, T. Effect of graphene on nonneuronal and neuronal cell viability and stress. Nano Lett. 2017, 17, 3297–3301.Google Scholar
  96. [96]
    Guo, C. X.; Zheng, X. T.; Lu, Z. S.; Lou, X. W.; Li, C. M. Biointerface by cell growth on layered graphene-artificial peroxidase-protein nanostructure for in situ quantitative molecular detection. Adv. Mater. 2010, 22, 5164–5167.Google Scholar
  97. [97]
    Bardhan, N. M.; Kumar, P. V.; Li, Z. Y.; Ploegh, H. L.; Grossman, J. C.; Belcher, A. M.; Chen, G. Y. Enhanced cell capture on functionalized graphene oxide nanosheets through oxygen clustering. ACS Nano 2017, 11, 1548–1558.Google Scholar
  98. [98]
    Shah, S.; Yin, P. T.; Uehara, T. M.; Chueng, S. T. D.; Yang, L. T.; Lee, K. B. Guiding stem cell differentiation into oligodendrocytes using graphenenanofiber hybrid scaffolds. Adv. Mater. 2014, 26, 3673–3680.Google Scholar
  99. [99]
    Li, W.; Wang, J. S.; Ren, J. S.; Qu, X. G. 3D graphene oxide-polymer hydrogel: Near-infrared light-triggered active scaffold for reversible cell capture and on-demand release. Adv. Mater. 2013, 25, 6737–6743.Google Scholar
  100. [100]
    Lu, J. Y.; Zhang, X. X.; Zhu, Q. Y.; Zhang, F. R.; Huang, W. T.; Ding, X. Z.; Xia, L. Q.; Luo, H. Q.; Li, N. B. Highly tunable and scalable fabrication of 3D flexible graphene micropatterns for directing cell alignment. ACS Appl. Mater. Interfaces 2018, 10, 17704–17713.Google Scholar
  101. [101]
    Chang, Y. L.; Yang, S. T.; Liu, J. H.; Dong, E. Y.; Wang, Y. W.; Cao, A. N.; Liu, Y. F.; Wang, H. F. In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 2011, 200, 201–210.Google Scholar
  102. [102]
    Chong, Y.; Ma, Y. F.; Shen, H.; Tu, X. L.; Zhou, X.; Xu, J. Y.; Dai, J. W.; Fan, S. J.; Zhang, Z. J. The in vitro and in vivo toxicity of graphene quantum dots. Biomaterials 2014, 35, 5041–5048.Google Scholar
  103. [103]
    Zhang, Y. B.; Ali, S. F.; Dervishi, E.; Xu, Y.; Li, Z. R.; Casciano, D.; Biris, A. S. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010, 4, 3181–3186.Google Scholar
  104. [104]
    Vallabani, N. V. S.; Mittal, S.; Shukla, R. K.; Pandey, A. K.; Dhakate, S. R.; Pasricha, R.; Dhawan, A. Toxicity of graphene in normal human lung cells (BEAS-2B). J. Biomed. Nanotechnol. 2011, 7, 106–107.Google Scholar
  105. [105]
    Hu, W. B.; Peng, C.; Lv, M.; Li, X. M.; Zhang, Y. J.; Chen, N.; Fan, C. H.; Huang, Q. Protein corona-mediated mitigation of cytotoxicity of graphene oxide. ACS Nano 2011, 5, 3693–3700.Google Scholar
  106. [106]
    Chong, Y.; Ge, C. C.; Yang, Z. X.; Garate, J. A.; Gu, Z. L.; Weber, J. K.; Liu, J. J.; Zhou, R. H. Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 2015, 9, 5713–5724.Google Scholar
  107. [107]
    Zhang, H.; Cheng, P.; Yang, J. Z.; Lv, M.; Liu, R.; He, D. N.; Fan, C. H.; Huang, Q. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. ACS Appl. Mater. Interfaces 2013, 5, 1761–1767.Google Scholar
  108. [108]
    Mittal, S.; Kumar, V.; Dhiman, N.; Chauhan, L. K. S.; Pasricha, R.; Pandey, A. K. Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Sci. Rep. 2016, 6, 39548.Google Scholar
  109. [109]
    Vranic, S.; Rodrigues, A. F.; Buggio, M.; Newman, L.; White, M. R. H.; Spiller, D. G.; Bussy, C.; Kostarelos, K. Live imaging of label-free graphene oxide reveals critical factors causing oxidative-stress-mediated cellular responses. ACS Nano 2018, 12, 1373–1389.Google Scholar
  110. [110]
    Li, R. B.; Guiney, L. M.; Chang, C. H.; Mansukhani, N. D.; Ji, Z. X.; Wang, X.; Liao, Y. P.; Jiang, W.; Sun, B. B.; Hersam, M. C. et al. Surface oxidation of graphene oxide determines membrane damage, lipid peroxidation, and cytotoxicity in macrophages in a pulmonary toxicity model. ACS Nano 2018, 12, 1390–1402.Google Scholar
  111. [111]
    Li, Y.; Liu, Y.; Fu, Y. J.; Wei, T. T.; Le Guyader, L.; Gao, G.; Liu, R. S.; Chang, Y. Z.; Chen, C. Y. The triggering of apoptosis in macrophages by pristine graphene through the MAPK and TGF-beta signaling pathways. Biomaterials 2012, 33, 402–411.Google Scholar
  112. [112]
    Chen, G. Y.; Yang, H. J.; Lu, C. H.; Chao, Y. C.; Hwang, S. M.; Chen, C. L.; Lo, K. W.; Sung, L. Y.; Luo, W. Y.; Tuan, H. Y. et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide. Biomaterials 2012, 33, 6559–6569.Google Scholar
  113. [113]
    Wang, L.; Li, X. M.; Han, Y. P.; Wang, T.; Zhao, Y.; Ali, A.; El-Sayed, N. N.; Shi, J. Y.; Wang, W. F.; Fan, C. H. et al. Quantum dots protect against MPP+-induced neurotoxicity in a cell model of Parkinson’s disease through autophagy induction. Sci. China Chem. 2016, 59, 1486–1491.Google Scholar
  114. [114]
    Pieper, H.; Chercheja, S.; Eigler, S.; Halbig, C. E.; Filipovic, M. R.; Mokhir, A. Endoperoxides revealed as origin of the toxicity of graphene oxide. Angew. Chem., Int. Ed. 2016, 55, 405–407.Google Scholar
  115. [115]
    Zhu, J. Q.; Xu, M.; Gao, M.; Zhang, Z. H.; Xu, Y.; Xia, T.; Liu, S. J. Graphene oxide-induced perturbation to plasma membrane and cytoskeletal meshwork sensitize cancer cells to chemotherapeutic agents. ACS Nano 2017, 11, 2637–2651.Google Scholar
  116. [116]
    Zhang, W. D.; Wang, C.; Li, Z. J.; Lu, Z. Z.; Li, Y. Y.; Yin, J. J.; Zhou, Y. T.; Gao, X. F.; Fang, Y.; Nie, G. et al. Unraveling stress-induced toxicity properties of graphene oxide and the underlying mechanism. Adv. Mater. 2012, 24, 5391–5397.Google Scholar
  117. [117]
    Zhang, X. Y.; Yin, J. L.; Peng, C.; Hu, W. Q.; Zhu, Z. Y.; Li, W. X.; Fan, C. H.; Huang, Q. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 2011, 49, 986–995.Google Scholar
  118. [118]
    Yang, K.; Wan, J. M.; Zhang, S.; Zhang, Y. J.; Lee, S. T.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution, and toxicology of PEGylated graphene in mice. ACS Nano 2011, 5, 516–522.Google Scholar
  119. [119]
    Li, B.; Zhang, X. Y.; Yang, J. Z.; Zhang, Y. J.; Li, W. X.; Fan, C. H.; Huang, Q. Influence of polyethylene glycol coating on biodistribution and toxicity of nanoscale graphene oxide in mice after intravenous injection. Int. J. Nanomedicine 2014, 9, 4697–4707.Google Scholar
  120. [120]
    Zhang, S.; Yang, K.; Feng, L. Z.; Liu, Z. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 2011, 49, 4040–4049.Google Scholar
  121. [121]
    Yang, K.; Gong, H.; Shi, X. Z.; Wan, J. M.; Zhang, Y. J.; Liu, Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 2013, 34, 2787–2795.Google Scholar
  122. [122]
    Syama, S.; Paul, W.; Sabareeswaran, A.; Mohanan, P. V. Raman spectroscopy for the detection of organ distribution and clearance of PEGylated reduced graphene oxide and biological consequences. Biomaterials 2017, 131, 121–130.Google Scholar
  123. [123]
    Nurunnabi, M.; Khatun, Z.; Huh, K. M.; Park, S. Y.; Lee, D. Y.; Cho, K. J.; Lee, Y. K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858–6867.Google Scholar
  124. [124]
    Ema, M.; Gamo, M.; Honda, K. A review of toxicity studies on graphenebased nanomaterials in laboratory animals. Regul. Toxicol. Pharmacol. 2017, 85, 7–24.Google Scholar
  125. [125]
    Gollavelli, G.; Ling, Y. C. Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 2012, 33, 2532–2545.Google Scholar
  126. [126]
    Akhavan, O.; Ghaderi, E.; Rahimi, K. Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J. Mater. Chem. 2012, 22, 23260–23266.Google Scholar
  127. [127]
    Xu, S.; Zhang, Z. Y.; Chu, M. Q. Long-term toxicity of reduced graphene oxide nanosheets: Effects on female mouse reproductive ability and offspring development. Biomaterials 2015, 54, 188–200.Google Scholar
  128. [128]
    Ma, J.; Liu, R.; Wang, X.; Liu, Q.; Chen, Y.; Valle, R. P.; Zuo, Y. Y.; Xia, T.; Liu, S. J. Crucial role of lateral size for graphene oxide in activating macrophages and stimulating pro-inflammatory responses in cells and animals. ACS Nano 2015, 9, 10498–10515.Google Scholar
  129. [129]
    Begum, P.; Ikhtiari, R.; Fugetsu, B. Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 2011, 49, 3907–3919.Google Scholar
  130. [130]
    Zhang, P.; Zhang, R. R.; Fang, X. Z.; Song, T. Q.; Cai, X. D.; Liu, H. J.; Du, S. T. Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): Short- and long-term exposure studies. J. Hazard. Mater. 2016, 317, 543–551.Google Scholar
  131. [131]
    Wang, Q. Q.; Zhao, S. Q.; Zhao, Y. L.; Rui, Q.; Wang, D. Y. Toxicity and translocation of graphene oxide in Arabidopsis plants under stress conditions. RSC Adv. 2014, 4, 60891–60901.Google Scholar
  132. [132]
    Zhao, S. Q.; Wang, Q. Q.; Zhao, Y. L.; Rui, Q.; Wang, D. Y. Toxicity and translocation of graphene oxide in Arabidopsis thaliana. Environ. Toxicol. Pharmacol. 2015, 39, 145–156.Google Scholar
  133. [133]
    Chen, L. Y.; Wang, C. L.; Li, H. L.; Qu, X. L.; Yang, S. T.; Chang, X. L. Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environ. Sci. Technol. 2017, 51, 10146–10153.Google Scholar
  134. [134]
    Zhang, J. Y.; Liu, L. L.; Ren, L.; Feng, W. M.; Lv, P.; Wu, W.; Yan, Y. C. The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. J. Hazard. Mater. 2017, 334, 121–131.Google Scholar
  135. [135]
    Lopes, S.; Pinheiro, C.; Soares, A. M. V. M.; Loureiro, S. Joint toxicity prediction of nanoparticles and ionic counterparts: Simulating toxicity under a fate scenario. J. Hazard. Mater. 2016, 320, 1–9.Google Scholar
  136. [136]
    Hu, W. B.; Peng, C.; Luo, W. J.; Lv, M.; Li, X. M.; Li, D.; Huang, Q.; Fan, C. H. Graphene-based antibacterial paper. ACS Nano 2010, 4, 4317–4323.Google Scholar
  137. [137]
    Akhavan, O.; Ghaderi, E. Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 2010, 4, 5731–5736.Google Scholar
  138. [138]
    Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.Google Scholar
  139. [139]
    He, J. L.; Zhu, X. D.; Qi, Z. N.; Wang, C.; Mao, X. J.; Zhu, C. L.; He, Z. Y.; Li, M. Y.; Tang, Z. S. Killing dental pathogens using antibacterial graphene oxide. ACS Appl. Mater. Interfaces 2015, 7, 5605–5611.Google Scholar
  140. [140]
    Liu, S. B.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R. R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012, 28, 12364–12372.Google Scholar
  141. [141]
    Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.Google Scholar
  142. [142]
    Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226–7236.Google Scholar
  143. [143]
    Hui, L. W.; Huang, J. L.; Chen, G. X.; Zhu, Y. W.; Yang, L. H. Antibacterial property of graphene quantum dots (both source material and bacterial shape matter). ACS Appl. Mater. Interfaces 2016, 8, 20–25.Google Scholar
  144. [144]
    Kuo, W. S.; Chen, H. H.; Chen, S. Y.; Chang, C. Y.; Chen, P. C.; Hou, Y. I.; Shao, Y. T.; Kao, H. F.; Lilian Hsu, C. L.; Chen, Y. C. et al. Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual-modality photodynamic antimicrobial therapy and bioimaging. Biomaterials 2017, 120, 185–194.Google Scholar
  145. [145]
    Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 2000, 52, 662–668.Google Scholar
  146. [146]
    Das, M. R.; Sarma, R. K.; Borah, S. C.; Kumari, R.; Saikia, R.; Deshmukh, A. B.; Shelke, M. V.; Sengupta, P.; Szunerits, S.; Boukherroub, R. The synthesis of citrate-modified silver nanoparticles in an aqueous suspension of graphene oxide nanosheets and their antibacterial activity. Colloid. Surf. B: Biointerfaces 2013, 105, 128–136.Google Scholar
  147. [147]
    Yu, L.; Zhang, Y. T.; Zhang, B.; Liu, J. D. Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure. Sci. Rep. 2014, 4, 4551.Google Scholar
  148. [148]
    Shen, J. F.; Shi, M.; Li, N.; Yan, B.; Ma, H. W.; Hu, Y. Z.; Ye, M. X. Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano Res. 2010, 3, 339–349.Google Scholar
  149. [149]
    Prasad, K.; Lekshmi, G. S.; Ostrikov, K.; Lussini, V.; Blinco, J.; Mohandas, M.; Vasilev, K.; Bottle, S.; Bazaka, K.; Ostrikov, K. Synergic bactericidal effects of reduced graphene oxide and silver nanoparticles against Gram-positive and Gram-negative bacteria. Sci. Rep. 2017, 7, 1591.Google Scholar
  150. [150]
    Xu, W. P.; Zhang, L. C.; Li, J. P.; Lu, Y.; Li, H. H.; Ma, Y. N.; Wang, W. D.; Yu, S. H. Facile synthesis of silver@graphene oxide nanocomposites and their enhanced antibacterial properties. J. Mater. Chem. 2011, 21, 4593–4597.Google Scholar
  151. [151]
    Ocsoy, I.; Paret, M. L.; Ocsoy, M. A.; Kunwar, S.; Chen, T.; You, M. X.; Tan, W. H. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. ACS Nano 2013, 7, 8972–8980.Google Scholar
  152. [152]
    Ocsoy, I.; Gulbakan, B.; Chen, T.; Zhu, G. Z.; Chen, Z.; Sari, M. M.; Peng, L.; Xiong, X. L.; Fang, X. H.; Tan, W. H. DNA-guided metalnanoparticle formation on graphene oxide surface. Adv. Mater. 2013, 25, 2319–2325.Google Scholar
  153. [153]
    Meng, X. Y.; Wang, H. Y.; Chen, N.; Ding, P.; Shi, H. Y.; Zhai, X.; Su, Y. Y.; He, Y. A graphene–silver nanoparticle–silicon sandwich SERS chip for quantitative detection of molecules and capture, discrimination, and inactivation of bacteria. Anal. Chem. 2018, 90, 5646–5653.Google Scholar
  154. [154]
    Wei, Y. H.; Chen, S.; Kowalczyk, B.; Huda, S.; Gray, T. P.; Grzybowski, B. A. Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J. Phys. Chem. C 2010, 114, 15612–15616.Google Scholar
  155. [155]
    Lin, D. H.; Qin, T. Q.; Wang, Y. Q.; Sun, X. Y.; Chen, L. X. Graphene oxide wrapped SERS tags: Multifunctional platforms toward optical labeling, photothermal ablation of bacteria, and the monitoring of killing effect. ACS Appl. Mater. Interfaces 2014, 6, 1320–1329.Google Scholar
  156. [156]
    Wang, X. D.; Zhou, N. L.; Yuan, J.; Wang, W. Y.; Tang, Y. D.; Lu, C. Y.; Zhang, J.; Shen, J. Antibacterial and anticoagulation properties of carboxylated graphene oxide-lanthanum complexes. J. Mater. Chem. 2012, 22, 1673–1678.Google Scholar
  157. [157]
    Akhavan, O.; Ghaderi, E. Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J. Phys. Chem. C 2009, 113, 20214–20220.Google Scholar
  158. [158]
    Liu, J. C.; Liu, L.; Bai, H. W.; Wang, Y. J.; Sun, D. D. Gram-scale production of graphene oxide-TiO2 nanorod composites: Towards highactivity photocatalytic materials. Appl. Catal. B: Environ. 2011, 106, 76–82.Google Scholar
  159. [159]
    Kim, I. Y.; Park, S.; Kim, H.; Park, S.; Ruoff, R. S.; Hwang, S. J. Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film. Adv. Funct. Mater. 2014, 24, 2288–2294.Google Scholar
  160. [160]
    Santos, C. M.; Tria, M. C. R.; Vergara, R. A. M. V.; Ahmed, F.; Advincula, R. C.; Rodrigues, D. F. Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem. Commun. 2011, 47, 8892–8894.Google Scholar
  161. [161]
    Some, S.; Ho, S. M.; Dua, P.; Hwang, E.; Shin, Y. H.; Yoo, H.; Kang, J. S.; Lee, D. K.; Lee, H. Dual functions of highly potent graphene derivative-poly-L-lysine composites to inhibit bacteria and support human cells. ACS Nano 2012, 6, 7151–7161.Google Scholar
  162. [162]
    Li, Y. F.; Yuan, H. Y.; von dem Bussche, A.; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. J. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. USA 2013, 110, 12295–12300.Google Scholar
  163. [163]
    Pham, V. T. H.; Truong, V. K.; Quinn, M. D. J.; Notley, S. M.; Guo, Y. C.; Baulin, V. A.; Al Kobaisi, M.; Crawford, R. J.; Ivanova, E. P. Graphene induces formation of pores that kill spherical and rod-shaped bacteria. ACS Nano 2015, 9, 8458–8467.Google Scholar
  164. [164]
    Yi, X.; Gao, H. J. Cell interaction with graphene microsheets: Nearorthogonal cutting versus parallel attachment. Nanoscale 2015, 7, 5457–5467.Google Scholar
  165. [165]
    Dallavalle, M.; Calvaresi, M.; Bottoni, A.; Melle-Franco, M.; Zerbetto, F. Graphene can wreak havoc with cell membranes. ACS Appl. Mater. Interfaces 2015, 7, 4406–4414.Google Scholar
  166. [166]
    Mangadlao, J. D.; Santos, C. M.; Felipe, M. J. L.; de Leon, A. C. C.; Rodrigues, D. F.; Advincula, R. C. On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett films. Chem. Commun. 2015, 51, 2886–2889.Google Scholar
  167. [167]
    Hui, L. W.; Piao, J. G.; Auletta, J.; Hu, K.; Zhu, Y. W.; Meyer, T.; Liu, H. T.; Yang, L. H. Availability of the basal planes of graphene oxide determines whether it is antibacterial. ACS Appl. Mater. Interfaces 2014, 6, 13183–13190.Google Scholar
  168. [168]
    Tan, K. H.; Sattari, S.; Donskyi, I. S.; Cuellar-Camacho, J. L.; Cheng, C.; Schwibbert, K.; Lippitz, A.; Unger, W. E. S.; Gorbushina, A.; Adeli, M. et al. Functionalized 2D nanomaterials with switchable binding to investigate graphene-bacteria interactions. Nanoscale 2018, 10, 9525–9537.Google Scholar
  169. [169]
    Lyon, D. Y.; Brunet, L.; Hinkal, G. W.; Wiesner, M. R.; Alvarez, P. J. J. Antibacterial activity of fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett. 2008, 8, 1539–1543.Google Scholar
  170. [170]
    Niu, A. P.; Han, Y. J.; Wu, J.; Yu, N.; Xu, Q. Synthesis of onedimensional carbon nanomaterials wrapped by silver nanoparticles and their antibacterial behavior. J. Phys. Chem. C 2010, 114, 12728–12735.Google Scholar
  171. [171]
    West, J. D.; Marnett, L. J. Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem. Res. Toxicol. 2006, 19, 173–194.Google Scholar
  172. [172]
    Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J. H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine 2012, 7, 5901–5914.Google Scholar
  173. [173]
    Pang, W. C.; Wu, J. L.; Zhang, Q. F.; Li, G. F. Graphene oxide enhanced, radiation cross-linked, vitamin E stabilized oxidation resistant UHMWPE with high hardness and tensile properties. RSC Adv. 2017, 7, 55536–55546.Google Scholar
  174. [174]
    Chen, J. N.; Wang, X. P.; Han, H. Y. A new function of graphene oxide emerges: Inactivating phytopathogenic bacterium Xanthomonas oryzae pv. Oryzae. J. Nanopart. Res. 2013, 15, 1658.Google Scholar
  175. [175]
    Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Park, M. R.; Kwon, D. N.; Kim, J. H. Antibacterial activity of dithiothreitol reduced graphene oxide. J. Ind. Eng. Chem. 2013, 19, 1280–1288.Google Scholar
  176. [176]
    Krishnamoorthy, K.; Veerapandian, M.; Zhang, L. H.; Yun, K.; Kim, S. J. Antibacterial efficiency of graphene nanosheets against pathogenic bacteria via lipid peroxidation. J. Phys. Chem. C 2012, 116, 17280–17287.Google Scholar
  177. [177]
    Giglio, S.; Jiang, J. Y.; Saint, C. P.; Cane, D. E.; Monis, P. T. Isolation and characterization of the gene associated with geosmin production in cyanobacteria. Environ. Sci. Technol. 2008, 42, 8027–8032.Google Scholar
  178. [178]
    Li, J. H.; Wang, G.; Zhu, H. Q.; Zhang, M.; Zheng, X. H.; Di, Z. F.; Liu, X. Y.; Wang, X. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Sci. Rep. 2014, 4, 4359.Google Scholar
  179. [179]
    Carpio, I. E. M.; Santos, C. M.; Wei, X.; Rodrigues, D. F. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 2012, 4, 4746–4756.Google Scholar
  180. [180]
    Chen, J. N.; Peng, H.; Wang, X.P.; Shao, F.; Yuan, Z. D.; Han, H. Y. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879–1889.Google Scholar
  181. [181]
    Kanchanapally, R.; Nellore, B. P. V.; Sinha, S. S.; Pedraza, F.; Jones, S. J.; Pramanik, A.; Chavva, S. R.; Tchounwou, C.; Shi, Y. L.; Vangara, A. et al. Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv. 2015, 5, 18881–18887.Google Scholar
  182. [182]
    Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. J. Phys. Chem. B 2011, 115, 6279–6288.Google Scholar
  183. [183]
    Luan, B. Q.; Huynh, T.; Zhao, L.; Zhou, R. H. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions. ACS Nano 2015, 9, 663–669.Google Scholar
  184. [184]
    Zhao, J. M.; Deng, B.; Lv, M.; Li, J. Y.; Zhang, Y. J.; Jiang, H. Q.; Peng, C.; Li, J.; Shi, J. Y.; Huang, Q. et al. Graphene oxide-based antibacterial cotton fabrics. Adv. Healthc. Mater. 2013, 2, 1259–1266.Google Scholar
  185. [185]
    Karimi, L.; Yazdanshenas, M. E.; Khajavi, R.; Rashidi, A.; Mirjalili, M. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity. Cellulose 2014, 21, 3813–3827.Google Scholar
  186. [186]
    Fan, Z. J.; Liu, B.; Wang, J. Q.; Zhang, S. Y.; Lin, Q. Q.; Gong, P. W.; Ma, L. M.; Yang, S. R. A novel wound dressing based on Ag/graphene–Adv. Funct. Mater. 2014, 24, 3933–3943.Google Scholar
  187. [187]
    Zhou, Y. Z.; Chen, R.; He, T. T.; Xu, K.; Du, D.; Zhao, N.; Cheng, X. N.; Yang, J.; Shi, H. F.; Lin, Y. H. Biomedical potential of ultrafine Ag/AgCl nanoparticles coated on graphene with special reference to antimicrobial performances and burn wound healing. ACS Appl. Mater. Interfaces 2016, 8, 15067–15075.Google Scholar
  188. [188]
    Lu, B. G.; Li, T.; Zhao, H. T.; Li, X. D.; Gao, C. T.; Zhang, S. X.; Xie, E. Q. Graphene-based composite materials beneficial to wound healing. Nanoscale 2012, 4, 2978–2982.Google Scholar
  189. [189]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.Google Scholar
  190. [190]
    Pandey, H.; Parashar, V.; Parashar, R.; Prakash, R.; Ramteke, P. W.; Pandey, A. C. Controlled drug release characteristics and enhanced antibacterial effect of graphene nanosheets containing gentamicin sulfate. Nanoscale 2011, 3, 4104–4108.Google Scholar
  191. [191]
    Wang, Y.; Zhang, D.; Bao, Q.; Wu, J. J.; Wan, Y. Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide-drug intercalated layered double hydroxide hybrid films. J. Mater. Chem. 2012, 22, 23106–23113.Google Scholar
  192. [192]
    Ghadim, E. E.; Manouchehri, F.; Soleimani, G.; Hosseini, H.; Kimiagar, S.; Nafisi, S. Adsorption properties of tetracycline onto graphene oxide: Equilibrium, kinetic and thermodynamic studies. PLoS One 2013, 8, e79254.Google Scholar
  193. [193]
    Huang, T. F.; Zhang, L.; Chen, H. L.; Gao, C. J. A cross-linking graphene oxide-polyethyleneimine hybrid film containing ciprofloxacin: One-step preparation, controlled drug release and antibacterial performance. J. Mater. Chem. B 2015, 3, 1605–1611.Google Scholar
  194. [194]
    Ding, H.; Zhang, F.; Zhao, C. C.; Lv, Y. L.; Ma, G. H.; Wei, W.; Tian, Z. Y. Beyond a carrier: Graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response. ACS Appl. Mater. Interfaces 2017, 9, 27396–27401.Google Scholar
  195. [195]
    Mo, R.; Jiang, T.; Sun, W.; Gu, Z. ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials 2015, 50, 67–74.Google Scholar
  196. [196]
    Jiang, T.; Sun, W.; Zhu, Q.; Burns, N. A.; Khan, S. A.; Mo, R.; Gu, Z. Furin-mediated sequential delivery of anticancer cytokine and smallmolecule drug shuttled by grapheme. Adv. Mater. 2015, 27, 1021–1028.Google Scholar
  197. [197]
    Zeng, X. K.; McCarthy, D. T.; Deletic, A.; Zhang, X. W. Silver/reduced graphene oxide hydrogel as novel bactericidal filter for point-of-use water disinfection. Adv. Funct. Mater. 2015, 25, 4344–4351.Google Scholar
  198. [198]
    Zeng, X. K.; Wang, Z. Y.; Meng, N.; McCarthy, D. T.; Deletic, A.; Pan, J. H.; Zhang, X. W. Highly dispersed TiO2 nanocrystals and carbon dots on reduced graphene oxide: Ternary nanocomposites for accelerated photocatalytic water disinfection. Appl. Catal. B: Environ. 2017, 202, 33–41.Google Scholar
  199. [199]
    Zeng, X. K.; Wang, Z. Y.; Wang, G.; Gengenbach, T. R.; McCarthy, D. T.; Deletic, A.; Yu, J. G.; Zhang, X. W. Highly dispersed TiO2 nanocrystals and WO3 Nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Appl. Catal. B: Environ. 2017, 218, 163–173.Google Scholar
  200. [200]
    Nellore, B. P. V.; Kanchanapally, R.; Pedraza, F.; Sinha, S. S.; Pramanik, A.; Hamme, A. T.; Arslan, Z.; Sardar, D.; Ray, P. C. Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces 2015, 7, 19210–19218.Google Scholar
  201. [201]
    Armani, M. A.; Abu-Taleb, A.; Remalli, N.; Abdullah, M.; Srikanth, V. V. S. S.; Labhasetwar, N. K. Dragon’s blood-aided synthesis of Ag/Ag2O core/shell nanostructures and Ag/Ag2O decked multi-layered graphene for efficient As(III) uptake from water and antibacterial activity. RSC Adv. 2016, 6, 44145–44153.Google Scholar
  202. [202]
    Wang, Y. L.; El-Deen, A. G.; Li, P.; Oh, B. H. L.; Guo, Z. R.; Khin, M. M.; Vikhe, Y. S.; Wang, J.; Hu, R. G.; Boom, R. M. et al. High-performance capacitive deionization disinfection of water with graphene oxide-graft-quaternized chitosan nanohybrid electrode coating. ACS Nano 2015, 9, 10142–10157.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials EngineeringShanghai University of Engineering ScienceShanghaiChina
  2. 2.Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  3. 3.Department of Endodontics, Shanghai Ninth People’s Hospital, College of StomatologyShanghai Jiao Tong University School of MedicineShanghaiChina
  4. 4.National Clinical Research Center of Oral DiseasesShanghaiChina
  5. 5.Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghaiChina
  6. 6.School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations