Advertisement

Nano Research

, Volume 12, Issue 2, pp 225–246 | Cite as

Nanomaterials for sensing of formaldehyde in air: Principles, applications, and performance evaluation

  • Deepak Kukkar
  • Kowsalya Vellingiri
  • Rajnish Kaur
  • Sanjeev Kumar Bhardwaj
  • Akash DeepEmail author
  • Ki-Hyun KimEmail author
Review Article
  • 160 Downloads

Abstract

Despite the improvement in sensing technologies, detection of small and highly reactive molecules like formaldehyde remains a highly challenging area of research. Applications of nanomaterials/nanostructures and their composites have increased as effective sensing platforms (e.g., reaction time, sensitivity, and selectivity) for the detection of aqueous or gaseous formaldehyde based on diverse sensing principles. In this review, the basic aspects of important nanomaterial-based sensing systems (e.g., electrochemical, electrical, biological, and mass variation sensors) were evaluated in relation to performance, cost, and practicality of sensing gas phase formaldehyde. Accordingly, existing knowledge gaps in such applications were assessed in various respects along with suitable recommendations for building a new roadmap for the expansion of chemical sensing technology of gas phase formaldehyde.

Keywords

nanomaterials formaldehyde hazardous pollutant sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (No. 2016R1E1A1A01940995). This research also acknowledges the support made by the R&D Center for Green Patrol Technologies through the R&D for Global Top Environmental Technologies funded by the Ministry of Environment (MOE) as well as support made by the Korea Ministry of Environment (MOE) (No. 2015001950001) as part of “The Chemical Accident Prevention Technology Development Project”. D. K. acknowledges the support of Science and Engineering Research Board, Government of India, for providing financial assistance under the young scientist scheme (No. YSS/2015/000212).

References

  1. [1]
    Leikauf, G. D. Formaldehyde and other aldehydes. In Environmental Toxicants; Lippmann, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; pp 257–316.Google Scholar
  2. [2]
    Dong, S.; Dasgupta, P. K. Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environ. Sci. Technol. 1986, 20, 637–640.Google Scholar
  3. [3]
    McGregor, D.; Bolt, H.; Cogliano, V.; Richter-Reichhelm, H. B. Formaldehyde and glutaraldehyde and nasal cytotoxicity: Case study within the context of the 2006 IPCS human framework for the analysis of a cancer mode of action for humans. Crit. Rev. Toxicol. 2006, 36, 821–835.Google Scholar
  4. [4]
    Salthammer, T.; Mentese, S.; Marutzky, R. Formaldehyde in the indoor environment. Chem. Rev. 2010, 110, 2536–2572.Google Scholar
  5. [5]
    Edrissi, B.; Taghizadeh, K.; Moeller, B. C.; Yu, R.; Kracko, D.; Doyle-Eisele, M.; Swenberg, J. A.; Dedon, P. C. N6-Formyllysine as a biomarker of formaldehyde exposure: Formation and loss of N6-formyllysine in nasal epithelium in long-term, low-dose inhalation studies in rats. Chem. Res. Toxicol. 2017, 30, 1572–1576.Google Scholar
  6. [6]
    Chung, P. R.; Tzeng, C. T.; Ke, M. T.; Lee, C. Y. Formaldehyde gas sensors: A review. Sensors 2013, 13, 4468–4484.Google Scholar
  7. [7]
    Allouch, A.; Guglielmino, M.; Bernhardt, P.; Serra, C. A.; Le Calvé, S. Transportable, fast and high sensitive near real-time analyzers: Formaldehyde detection. Sens. Actuators B Chem. 2013, 181, 551–558.Google Scholar
  8. [8]
    Xu, Z. Q.; Chen, J. H.; Hu, L. L.; Tan, Y.; Liu, S. H.; Yin, J. Recent advances in formaldehyde-responsive fluorescent probes. Chin. Chem. Lett. 2017, 28, 1935–1942.Google Scholar
  9. [9]
    Canha, N.; Lage, J.; Candeias, S.; Alves, C.; Almeida, S. M. Indoor air quality during sleep under different ventilation patterns. Atmos. Pollut. Res. 2017, 8, 1132–1142.Google Scholar
  10. [10]
    Antwi-Boampong, S.; Mani, K. S.; Carlan, J.; BelBruno, J. J. A selective molecularly imprinted polymer-carbon nanotube sensor for cotinine sensing. J. Mol. Recognit. 2014, 27, 57–63.Google Scholar
  11. [11]
    Jeong, H. S.; Chung, H.; Song, S. H.; Kim, C. I.; Lee, J. G.; Kim, Y. S. Validation and determination of the contents of acetaldehyde and formaldehyde in foods. Toxicol. Res. 2015, 31, 273–278.Google Scholar
  12. [12]
    Kim, Y. H.; Kumar, P.; Kwon, E. E.; Kim, K. H. Metal-organic frameworks as superior media for thermal desorption-gas chromatography application: A critical assessment of MOF-5 for the quantitation of airborne formaldehyde. Microchem. J. 2017, 132, 219–226.Google Scholar
  13. [13]
    Wahed, P.; Razzaq, M. A.; Dharmapuri, S.; Corrales, M. Determination of formaldehyde in food and feed by an in-house validated HPLC method. Food Chem. 2016, 202, 476–483.Google Scholar
  14. [14]
    Qin, X. C.; Wang, R.; Tsow, F.; Forzani, E.; Xian, X. J.; Tao, N. J. A colorimetric chemical sensing platform for real-time monitoring of indoor formaldehyde. IEEE Sens. J. 2015, 15, 1545–1551.Google Scholar
  15. [15]
    Zeng, J. B.; Fan, S. G.; Zhao, C. Y.; Wang, Q. R.; Zhou, T. Y.; Chen, X.; Yan, Z. F.; Li, Y. P.; Xing, W.; Wang, X. D. A colorimetric agarose gel for formaldehyde measurement based on nanotechnology involving Tollens reaction. Chem. Commun. 2014, 50, 8121–8123.Google Scholar
  16. [16]
    Woolston, B. M.; Roth, T.; Kohale, I.; Liu, D. R.; Stephanopoulos, G. Development of a formaldehyde biosensor with application to synthetic methylotrophy. Biotechnol. Bioeng. 2018, 115, 206–215.Google Scholar
  17. [17]
    Ozoner, S. K.; Erhan, E.; Yilmaz, F.; Ergenekon, P.; Anil, I. Electrochemical biosensor for detection of formaldehyde in rain water. J. Chem. Technol. Biotechnol. 2013, 88, 727–732.Google Scholar
  18. [18]
    Hou, S. C.; Zhang, A. Y.; Su, M. Nanomaterials for biosensing applications. Nanomaterials 2016, 6, 58.Google Scholar
  19. [19]
    Rowland, C. E.; Brown, C. W.; Delehanty, J. B.; Medintz, I. L. Nanomaterial-based sensors for the detection of biological threat agents. Mater. Today 2016, 19, 464–477.Google Scholar
  20. [20]
    Zeng, S. W.; Baillargeat, D.; Ho, H. P.; Yong, K. T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452.Google Scholar
  21. [21]
    Ho, H. P.; Law, W. C.; Wu, S. Y.; Liu, X. H.; Wong, S. P.; Lin, C. L.; Kong, S. K. Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sens. Actuators B Chem. 2006, 114, 80–84.Google Scholar
  22. [22]
    Mangum, J. G.; Darling, J.; Menten, K. M.; Henkel, C. Formaldehyde densitometry of starburst galaxies. Astrophys. J. 2008, 673, 832–846.Google Scholar
  23. [23]
    Castro-Hurtado, I.; Mandayo, G. G.; Castaño, E. Conductometric formaldehyde gas sensors. A review: From conventional films to nanostructured materials. Thin Solid Films 2013, 548, 665–676.Google Scholar
  24. [24]
    Grützner, T.; Hasse, H. Solubility of formaldehyde and trioxane in aqueous solutions. J. Chem. Eng. Data 2004, 49, 642–646.Google Scholar
  25. [25]
    Jensen, R. P.; Luo, W. T.; Pankow, J. F.; Strongin, R. M.; Peyton, D. H. Hidden formaldehyde in E-cigarette aerosols. New Engl. J. Med. 2015, 372, 392–394.Google Scholar
  26. [26]
    Tong, Z. Q.; Han, C. S.; Luo, W. H.; Wang, X. H.; Li, H.; Luo, H. J.; Zhou, J. N.; Qi, J. S.; He, R. Q. Accumulated hippocampal formaldehyde induces age-dependent memory decline. AGE 2013, 35, 583–596.Google Scholar
  27. [27]
    Bruemmer, K. J.; Brewer, T. F.; Chang, C. J. Fluorescent probes for imaging formaldehyde in biological systems. Curr. Opin. Chem. Biol. 2017, 39, 17–23.Google Scholar
  28. [28]
    Pontel, L. B.; Rosado, I. V.; Burgos-Barragan, G.; Garaycoechea, J. I.; Yu, R.; Arends, M. J.; Chandrasekaran, G.; Broecker, V.; Wei, W.; Liu, L. M. et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol. Cell 2015, 60, 177–188.Google Scholar
  29. [29]
    Scotti, M.; Stella, L.; Shearer, E. J.; Stover, P. J. Modeling cellular compartmentation in one-carbon metabolism. Wiley Interdiscip. Rev. Syst. Biol. Med. 2013, 5, 343–365.Google Scholar
  30. [30]
    Tralau, T.; Lafite, P.; Levy, C.; Combe, J. P.; Scrutton, N. S.; Leys, D. An internal reaction chamber in dimethylglycine oxidase provides efficient protection from exposure to toxic formaldehyde. J. Biol. Chem. 2009, 284, 17826–17834.Google Scholar
  31. [31]
    Tulpule, K.; Hohnholt, M. C.; Dringen, R. Formaldehyde metabolism and formaldehyde-induced stimulation of lactate production and glutathione export in cultured neurons. J. Neurochem. 2013, 125, 260–272.Google Scholar
  32. [32]
    Ken, C. F.; Huang, C. Y.; Wen, L. S.; Huang, J. K.; Lin, C. T. Modulation of nitrosative stress via glutathione-dependent formaldehyde dehydrogenase and S-nitrosoglutathione reductase. Int. J. Mol. Sci. 2014, 15, 14166–14179.Google Scholar
  33. [33]
    Hopkinson, R. J.; Leung, I. K. H.; Smart, T. J.; Rose, N. R.; Henry, L.; Claridge, T. D. W.; Schofield, C. J. Studies on the glutathione-dependent formaldehyde-activating enzyme from Paracoccus denitrificans. PLoS One 2015, 10, e0145085.Google Scholar
  34. [34]
    Lessmeier, L.; Hoefener, M.; Wendisch, V. F. Formaldehyde degradation in Corynebacterium glutamicum involves acetaldehyde dehydrogenase and mycothiol-dependent formaldehyde dehydrogenase. Microbiology 2013, 159, 2651–2662.Google Scholar
  35. [35]
    Fox, J. T.; Stover, P. J. Folate–mediated one–carbon metabolism. In Vitamins & Hormones; Gerald, L., Ed.; Academic Press: New York, 2008; pp 1–44.Google Scholar
  36. [36]
    Duong, A.; Steinmaus, C.; McHale, C. M.; Vaughan, C. P.; Zhang, L. P. Reproductive and developmental toxicity of formaldehyde: A systematic review. Mutat. Res. Rev. Mutat. Res. 2011, 728, 118–138.Google Scholar
  37. [37]
    Mori, M.; Matsumoto, Y.; Kushino, N.; Morimatsu, Y.; Hoshiko, M.; Saga, T.; Yamaki, K. I.; Ishitake, T. Comparison of subjective symptoms associated with exposure to low levels of formaldehyde between students enrolled and not enrolled in a gross anatomy course. Environ. Health Prev. Med. 2016, 21, 34–41.Google Scholar
  38. [38]
    Swenberg, J. A.; Moeller, B. C.; Lu, K.; Rager, J. E.; Fry, R. C.; Starr, T. B. Formaldehyde carcinogenicity research: 30 years and counting for mode of action, epidemiology, and cancer risk assessment. Toxicol. Pathol. 2013, 41, 181–189.Google Scholar
  39. [39]
    Zhang, L. P.; Tang, X. J.; Rothman, N.; Vermeulen, R.; Ji, Z. Y.; Shen, M.; Qiu, C. Y.; Guo, W. H.; Liu, S. W.; Reiss, B. et al. Occupational exposure to formaldehyde, hematotoxicity, and leukemia-specific chromosome changes in cultured myeloid progenitor cells. Cancer Epidemiol. Biomarkers Prev. 2010, 19, 80–88.Google Scholar
  40. [40]
    Lan, Q.; Smith, M. T.; Tang, X. J.; Guo, W. H.; Vermeulen, R.; Ji, Z. Y.; Hu, W.; Hubbard, A. E.; Shen, M.; McHale, C. M. et al. Chromosome-wide aneuploidy study of cultured circulating myeloid progenitor cells from workers occupationally exposed to formaldehyde. Carcinogenesis 2015, 36, 160–167.Google Scholar
  41. [41]
    Albertini, R. J.; Kaden, D. A. Do chromosome changes in blood cells implicate formaldehyde as a leukemogen? Crit. Rev. Toxicol. 2017, 47, 145–184.Google Scholar
  42. [42]
    Hipkiss, A. R. Depression, diabetes and dementia: Formaldehyde may be a common causal agent; could carnosine, a pluripotent peptide, be protective? Aging Dis. 2017, 8, 128–130.Google Scholar
  43. [43]
    Akshath, U. S.; Bhatt, P. Supramolecular nano-sniffers for ultrasensitive detection of formaldehyde. Biosens. Bioelectron. 2018, 100, 201–207.Google Scholar
  44. [44]
    Gu, D. C.; Zou, M. J.; Guo, X. X.; Yu, P.; Lin, Z. W.; Hu, T.; Wu, Y. F.; Liu, Y.; Gan, J. H.; Sun, S. Q. et al. A rapid analytical and quantitative evaluation of formaldehyde in squid based on Tri-step IR and partial least squares (PLS). Food Chem. 2017, 229, 458–463.Google Scholar
  45. [45]
    El Sayed, S.; Pascual, L.; Licchelli, M.; Martínez-Máñez, R.; Gil, S.; Costero, A. M.; Sancenón, F. Chromogenic detection of aqueous formaldehyde using functionalized silica nanoparticles. ACS Appl. Mater. Interfaces 2016, 8, 14318–14322.Google Scholar
  46. [46]
    Baez-Gaxiola, M. R.; Fernández-Sánchez, C.; Mendoza, E. Gold cluster based electrocatalytic sensors for the detection of formaldehyde. Anal. Methods 2015, 7, 538–542.Google Scholar
  47. [47]
    Zhang, T. Y.; Qin, L. X.; Kang, S. Z.; Li, G. D.; Li, X. Q. Novel reduced graphene oxide/Ag nanoparticle composite film with sensitive detection activity towards trace formaldehyde. Sens. Actuators B Chem. 2017, 242, 1129–1132.Google Scholar
  48. [48]
    Huang, L. Z.; Wang, Z.; Zhu, X. F.; Chi, L. F. Electrical gas sensors based on structured organic ultra-thin films and nanocrystals on solid state substrates. Nanoscale Horiz. 2016, 1, 383–393.Google Scholar
  49. [49]
    Tai, H. L.; Li, X.; Jiang, Y. D.; Xie, G. Z.; Du, X. S. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability. Sensors 2015, 15, 2086–2103.Google Scholar
  50. [50]
    Wang, L. Y; Wang, Z. X; Xiang, Q.; Chen, Y.; Duan, Z. M; Xu, J. Q. High performance formaldehyde detection based on a novel copper (II) complex functionalized QCM gas sensor. Sens. Actuators B Chem. 2017, 248, 820–828.Google Scholar
  51. [51]
    Mishra, R. K.; Kushwaha, A.; Sahay, P. P. Influence of Cu doping on the structural, photoluminescence and formaldehyde sensing properties of SnO2 nanoparticles. RSC Adv. 2014, 4, 3904–3912.Google Scholar
  52. [52]
    Shen, J. L.; Guo, S. J.; Chen, C.; Sun, L.; Wen, S. P.; Chen, Y.; Ruan, S. P. Synthesis of Ni-doped α-MoO3 nanolamella and their improved gas sensing properties. Sens. Actuators B Chem. 2017, 252, 757–763.Google Scholar
  53. [53]
    Zhou, T. T.; Zhang, T.; Zhang, R.; Lou, Z.; Deng, J. N.; Wang, L. L. Hollow ZnSnO3 cubes with controllable shells enabling highly efficient chemical sensing detection of formaldehyde vapors. ACS Appl. Mater. Interfaces 2017, 9, 14525–14533.Google Scholar
  54. [54]
    Korotcenkov, G.; Brinzari, V.; Cho, B. K. Conductometric gas sensors based on metal oxides modified with gold nanoparticles: A review. Microchim. Acta 2016, 183, 1033–1054.Google Scholar
  55. [55]
    Ojani, R.; Raoof, J. B.; Safshekan, S. Photoinduced deposition of palladium nanoparticles on TiO2 nanotube electrode and investigation of its capability for formaldehyde oxidation. Electrochim. Acta 2014, 138, 468–475.Google Scholar
  56. [56]
    Wang, X. S.; Zhang, J. B.; He, Y.; Wang, L. Y.; Liu, L.; Wang, H.; Guo, X. X.; Lian, H. W. Porous Nd-doped In2O3 nanotubes with excellent formaldehyde sensing properties. Chem. Phys. Lett. 2016, 658, 319–323.Google Scholar
  57. [57]
    Stradiotto, N. R.; Yamanaka, H.; Zanoni, M. V. B. Electrochemical sensors: A powerful tool in analytical chemistry. J. Braz. Chem. Soc. 2003, 14, 159–173.Google Scholar
  58. [58]
    Wang, Q.; Zheng, J. B.; Zhang, H. F. A novel formaldehyde sensor containing AgPd alloy nanoparticles electrodeposited on an ionic liquid–chitosan composite film. J. Electroanal. Chem. 2012, 674, 1–6.Google Scholar
  59. [59]
    Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E. Electrochemical biosensors—Sensor principles and architectures. Sensors 2008, 8, 1400–1458.Google Scholar
  60. [60]
    Aragay, G.; Pino, F.; Merkoçi, A. Nanomaterials for sensing and destroying pesticides. Chem. Rev. 2012, 112, 5317–5338.Google Scholar
  61. [61]
    Maduraiveeran, G.; Jin, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Anal. Chem. 2017, 13, 10–23.Google Scholar
  62. [62]
    Zhang, W. Y.; Asiri, A. M.; Liu, D. L.; Du, D.; Lin, Y. H. Nanomaterial-based biosensors for environmental and biological monitoring of organophosphorus pesticides and nerve agents. TrAC Trends Anal. Chem. 2014, 54, 1–10.Google Scholar
  63. [63]
    Monkawa, A.; Gessei, T.; Takimoto, Y.; Jo, N.; Wada, T.; Sanari, N. Highly sensitive and rapid gas biosensor for formaldehyde based on an enzymatic cycling system. Sens. Actuators B Chem. 2015, 210, 241–247.Google Scholar
  64. [64]
    Fauzia, V.; Imawan, N. C.; Narayani, N. M. M. S.; Putri, A. E. A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sens. Actuators B Chem. 2018, 257, 1128–1133.Google Scholar
  65. [65]
    Noor Aini, B.; Siddiquee, S.; Ampon, K. Development of formaldehyde biosensor for determination of formalin in fish samples; malabar red snapper (Lutjanus malabaricus) and longtail tuna (Thunnus tonggol). Biosensors 2016, 6, 32.Google Scholar
  66. [66]
    Marzuki, N.; Bakar, F. A.; Salleh, A. B.; Heng, L. Y.; Yusof, N. A.; Siddiquee, S. Electrochemical biosensor immobilization of formaldehyde dehydrogenase with nafion for determination of formaldehyde from indian mackerel (Rastrelliger kanagurta) fish. Curr. Anal. Chem. 2012, 8, 534–542.Google Scholar
  67. [67]
    Nguyen-Boisse, T. T.; Saulnier, J.; Jaffrezic-Renault, N.; Lagarde, F. Miniaturised enzymatic conductometric biosensor with Nafion membrane for the direct determination of formaldehyde in water samples. Anal. Bioanal. Chem. 2014, 406, 1039–1048.Google Scholar
  68. [68]
    Bareket, L.; Rephaeli, A.; Berkovitch, G.; Nudelman, A.; Rishpon, J. Carbon nanotubes based electrochemical biosensor for detection of formaldehyde released from a cancer cell line treated with formaldehyde-releasing anticancer prodrugs. Bioelectrochemistry 2010, 77, 94–99.Google Scholar
  69. [69]
    Premaratne, G.; Farias, S.; Krishnan, S. Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in urine. Anal. Chim. Acta 2017, 970, 23–29.Google Scholar
  70. [70]
    Shimomura, T.; Itoh, T.; Sumiya, T.; Mizukami, F.; Ono, M. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B Chem. 2008, 135, 268–275.Google Scholar
  71. [71]
    Achmann, S.; Hämmerle, M.; Moos, R. Amperometric enzyme-based biosensor for direct detection of formaldehyde in the gas phase: Dependence on electrolyte composition. Electroanalysis 2008, 20, 410–417.Google Scholar
  72. [72]
    Dai, H.; Gong, L. S.; Xu, G. F.; Li, X. H.; Zhang, S. P.; Lin, Y. Y.; Zeng, B. S.; Yang, C. P.; Chen, G. N. An electrochemical impedimetric sensor based on biomimetic electrospun nanofibers for formaldehyde. Analyst 2015, 140, 582–589.Google Scholar
  73. [73]
    Barsukov, Y.; Macdonald, J. R. Electrochemical impedance spectroscopy. In Characterization of Materials; Kaufmann, E. N., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.Google Scholar
  74. [74]
    Kannan, P. K.; Saraswathi, R. An impedance sensor for the detection of formaldehyde vapor using ZnO nanoparticles. J. Mater. Res. 2017, 32, 2800–2809.Google Scholar
  75. [75]
    Liu, Y. X.; Parisi, J.; Sun, X. C.; Lei, Y. Solid-state gas sensors for high temperature applications—A review. J. Mater. Chem. A 2014, 2, 9919–9943.Google Scholar
  76. [76]
    Pasierb, P.; Rekas, M. Solid-state potentiometric gas sensors—Current status and future trends. J. Solid State Electrochem. 2009, 13, 3–25.Google Scholar
  77. [77]
    Volkov, A.; Gorbova, E.; Vylkov, A.; Medvedev, D.; Demin, A.; Tsiakaras, P. Design and applications of potentiometric sensors based on protonconducting ceramic materials. A brief review. Sens. Actuators B Chem. 2017, 244, 1004–1015.Google Scholar
  78. [78]
    Kaisti, M. Detection principles of biological and chemical FET sensors. Biosens. Bioelectron. 2017, 98, 437–448.Google Scholar
  79. [79]
    Shoorideh, K.; Chui, C. O. On the origin of enhanced sensitivity in nanoscale FET-based biosensors. Proc. Natl. Acad. Sci. USA 2014, 111, 5111–5116.Google Scholar
  80. [80]
    Mao, S.; Chang, J. B.; Pu, H. H.; Lu, G. H.; He, Q. Y.; Zhang, H.; Chen, J. H. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904.Google Scholar
  81. [81]
    Ramgir, N. S.; Yang, Y.; Zacharias, M. Nanowire-based sensors. Small 2010, 6, 1705–1722.Google Scholar
  82. [82]
    Han, Z. J.; Mehdipour, H.; Li, X. G.; Shen, J.; Randeniya, L.; Yang, H. Y.; Ostrikov, K. SWCNT networks on nanoporous silica catalyst support: Morphological and connectivity control for nanoelectronic, gas-sensing, and biosensing devices. ACS Nano 2012, 6, 5809–5819.Google Scholar
  83. [83]
    Hosseini, M. S.; Zeinali, S.; Sheikhi, M. H. Fabrication of capacitive sensor based on Cu-BTC (MOF-199) nanoporous film for detection of ethanol and methanol vapors. Sens. Actuators B Chem. 2016, 230, 9–16.Google Scholar
  84. [84]
    Igreja, R.; Dias, C. J. Dielectric response of interdigital chemocapacitors: The role of the sensitive layer thickness. Sens. Actuators B Chem. 2006, 115, 69–78.Google Scholar
  85. [85]
    Zhang, F. J.; Qu, G.; Mohammadi, E.; Mei, J. G.; Diao, Y. Solutionprocessed nanoporous organic semiconductor thin films: Toward health and environmental monitoring of volatile markers. Adv. Funct. Mater. 2017, 27, 1701117.Google Scholar
  86. [86]
    Chang, J. J.; Lin, Z. H.; Li, J.; Lim, S. L.; Wang, F.; Li, G. Q.; Zhang, J.; Wu, J. S. Enhanced polymer thin film transistor performance by carefully controlling the solution self-assembly and film alignment with slot die coating. Adv. Electron. Mater. 2015, 1, 1500036.Google Scholar
  87. [87]
    Yang, R. D.; Gredig, T.; Colesniuc, C. N.; Park, J.; Schuller, I. K.; Trogler, W. C.; Kummel, A. C. Ultrathin organic transistors for chemical sensing. Appl. Phys. Lett. 2007, 90, 263506.Google Scholar
  88. [88]
    Li, B.; Lambeth, D. N. Chemical sensing using nanostructured polythiophene transistors. Nano Lett. 2008, 8, 3563–3567.Google Scholar
  89. [89]
    Vishinkin, R.; Haick, H. Nanoscale sensor technologies for disease detection via volatolomics. Small 2015, 11, 6142–6164.Google Scholar
  90. [90]
    Gautschi, G. Background of piezoelectric sensors. In Piezoelectric Sensorics: Force Strain Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers; Gautschi, G., Ed.; Springer: Berlin, Heidelberg, 2002; pp 5–11.Google Scholar
  91. [91]
    Liu, G. M.; Zhang, G. Z. Basic principles of QCM-D. In QCM-D Studies on Polymer Behavior at Interfaces; Liu, G. M.; Zhang, G. Z., Eds.; Springer: Berlin, Heidelberg, 2013; pp 1–8.Google Scholar
  92. [92]
    Bunde, R. L.; Jarvi, E. J.; Rosentreter, J. J. A piezoelectric method for monitoring formaldehyde induced crosslink formation between poly-lysine and poly-deoxyguanosine. Talanta 2000, 51, 159–171.Google Scholar
  93. [93]
    Seo, H.; Jung, S.; Jeon, S. Detection of formaldehyde vapor using mercaptophenol-coated piezoresistive cantilevers. Sens. Actuators B Chem. 2007, 126, 522–526.Google Scholar
  94. [94]
    Yao, Y.; Xue, Y. J. Impedance analysis of quartz crystal microbalance humidity sensors based on nanodiamond/graphene oxide nanocomposite film. Sens. Actuators B Chem. 2015, 211, 52–58.Google Scholar
  95. [95]
    Wang, N.; Wang, X. F.; Jia, Y. T.; Li, X. Q.; Yu, J. Y.; Ding, B. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydr. Polym. 2014, 108, 192–199.Google Scholar
  96. [96]
    Yan, D.; Xu, P. C.; Xiang, Q.; Mou, H. R.; Xu, J. Q.; Wen, W. J.; Li, X. X.; Zhang, Y. Polydopamine nanotubes: Bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J. Mater. Chem. A 2016, 4, 3487–3493.Google Scholar
  97. [97]
    Su, S.; Wu, W. H.; Gao, J. M.; Lu, J. X.; Fan, C. H. Nanomaterials-based sensors for applications in environmental monitoring. J. Mater. Chem. 2012, 22, 18101–18110.Google Scholar
  98. [98]
    Zhang, Y. D.; Guo, S. S.; Zheng, Z. Nanocrystalline Ho3+-doped WO3: A promising material for acetone detection. J. Exp. Nanosci. 2013, 8, 184–193.Google Scholar
  99. [99]
    Chae, H.; Song, D.; Lee, Y. G.; Son, T.; Cho, W.; Pyun, Y. B.; Kim, T. Y.; Lee, J. H.; Fabregat-Santiago, F.; Bisquert, J. et al. Chemical effects of tin oxide nanoparticles in polymer electrolytes-based dye-sensitized solar cells. J. Phys. Chem. C 2014, 118, 16510–16517.Google Scholar
  100. [100]
    Zheng, H. D.; Tachibana, Y.; Kalantar-Zadeh, K. Dye-sensitized solar cells based on WO3. Langmuir 2010, 26, 19148–19152.Google Scholar
  101. [101]
    Mahalingam, S.; Abdullah, H.; Ashaari, I.; Shaari, S.; Muchtar, A. Optical, morphology and electrical properties of In2O3 incorporating acid-treated single-walled carbon nanotubes based DSSC. J. Phys. D Appl. Phys. 2016, 49, 075601.Google Scholar
  102. [102]
    Han, D. M.; Zhai, L. L.; Gu, F. B.; Wang, Z. H. Highly sensitive NO2 gas sensor of ppb-level detection based on In2O3 nanobricks at low temperature. Sens. Actuators B Chem. 2018, 262, 655–663.Google Scholar
  103. [103]
    Jakob, M. H.; Dong, B.; Gutsch, S.; Chatelle, C.; Krishnaraja, A.; Weber, W.; Zacharias, M. Label-free SnO2 nanowire FET biosensor for protein detection. Nanotechnology 2017, 28, 245503.Google Scholar
  104. [104]
    Welearegay, T. G.; Calavia, R.; Ionescu, R.; Llobet, E. Gas sensing approaches based on WO3 nanowire-back gated devices. Proceedings 2017, 1, 437.Google Scholar
  105. [105]
    Singh, N.; Gupta, R. K.; Lee, P. S. Gold-nanoparticle-functionalized In2O3 Nanowires as CO gas sensors with a significant enhancement in response. ACS Appl. Mater. Interfaces 2011, 3, 2246–2252.Google Scholar
  106. [106]
    Yu, H.; Yang, T. Y.; Wang, Z. Y.; Li, Z. F.; Xiao, B. X.; Zhao, Q.; Zhang, M. Z. Facile synthesis cedar-like SnO2 hierarchical micro-nanostructures with improved formaldehyde gas sensing characteristics. J. Alloys Compd. 2017, 724, 121–129.Google Scholar
  107. [107]
    Lin, Y.; Wei, W.; Li, Y. J.; Li, F.; Zhou, J. R.; Sun, D. M.; Chen, Y.; Ruan, S. P. Preparation of Pd nanoparticle-decorated hollow SnO2 nanofibers and their enhanced formaldehyde sensing properties. J. Alloys Compd. 2015, 651, 690–698.Google Scholar
  108. [108]
    Bo, Z.; Yuan, M.; Mao, S.; Chen, X.; Yan, J. H.; Cen, K. F. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B. Chem. 2018, 256, 1011–1020.Google Scholar
  109. [109]
    Chen, S.; Qiao, Y.; Huang, J. L.; Yao, H. L.; Zhang, Y. L.; Li, Y.; Du, J. P.; Fan, W. B. One-pot synthesis of mesoporous spherical SnO2@graphene for high-sensitivity formaldehyde gas sensors. RSC Adv. 2016, 6, 25198–25202.Google Scholar
  110. [110]
    Wang, Y.; Jiang, D. S.; Wei, W.; Zhu, L. H.; Zhou, J. R.; Sun, D. M.; Ruan, S. P. Applications for rapid formaldehyde nanoreactor with hierarchical and spherical structure. Sens. Actuators B Chem. 2016, 227, 475–481.Google Scholar
  111. [111]
    Li, S. H.; Liu, Y. K.; Wu, Y. M.; Chen, W. W.; Qin, Z. J.; Gong, N. L.; Yu, D. P. Highly sensitive formaldehyde resistive sensor based on a single Er-doped SnO2 nanobelt. Physica B Condens. Matter 2016, 489, 33–38.Google Scholar
  112. [112]
    Wang, T. Q.; Sun, Z. X.; Wang, Y.; Liu, R.; Sun, M. H.; Xu, L. Enhanced photoelectric gas sensing performance of SnO2 flower-like nanorods modified with polyoxometalate for detection of volatile organic compound at room temperature. Sens. Actuators B Chem. 2017, 246, 769–775.Google Scholar
  113. [113]
    Choi, Y. H.; Kim, D. H.; Han, H. S.; Shin, S.; Hong, S. H.; Hong, K. S. Direct printing synthesis of self-organized copper oxide hollow spheres on a substrate using copper(II) complex ink: Gas sensing and photoelectrochemical properties. Langmuir 2014, 30, 700–709.Google Scholar
  114. [114]
    Wang, X.; Meng, Y. Y.; Li, G. D.; Zou, Y. C.; Cao, Y.; Zou, X. X. UV-assisted, template-free synthesis of ultrathin nanosheet-assembled hollow indium oxide microstructures for effective gaseous formaldehyde detection. Sens. Actuators B Chem. 2016, 224, 559–567.Google Scholar
  115. [115]
    Wang, X. S.; Zhang, J. B.; Wang, L. Y.; Li, S. C.; Liu, L.; Su, C.; Liu, L. L. High response gas sensors for formaldehyde based on Er-doped In2O3 nanotubes. J. Mater. Sci. Technol. 2015, 31, 1175–1180.Google Scholar
  116. [116]
    Wang, J. L.; Zhai, Q. G.; Li, S. N.; Jiang, Y. C.; Hu, M. C. Mesoporous In2O3 materials prepared by solid-state thermolysis of indium-organic frameworks and their high HCHO-sensing performance. Inorg. Chem. Commun. 2016, 63, 48–52.Google Scholar
  117. [117]
    Xue, Y. Y.; Wang, J. L.; Li, S. N.; Jiang, Y. C.; Hu, M. C.; Zhai, Q. G. Mesoporous Ag/In2O3 composite derived from indium organic framework as high performance formaldehyde sensor. J. Solid State Chem. 2017, 251, 170–175.Google Scholar
  118. [118]
    Mishra, R. K.; Murali, G.; Kim, T. H.; Kim, J. H.; Lim, Y. J.; Kim, B. S.; Sahay, P. P.; Lee, S. H. Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv. 2017, 7, 38714–38724.Google Scholar
  119. [119]
    Dong, C. J.; Liu, X.; Han, B. Q.; Deng, S. J.; Xiao, X. C.; Wang, Y. D. Nonaqueous synthesis of Ag-functionalized In2O3/ZnO nanocomposites for highly sensitive formaldehyde sensor. Sens. Actuators B Chem. 2016, 224, 193–200.Google Scholar
  120. [120]
    Cao, Y. Y.; He, Y.; Zou, X. X.; Li, G. D. Tungsten oxide clusters decorated ultrathin In2O3 nanosheets for selective detecting formaldehyde. Sens. Actuators B Chem. 2017, 252, 232–238.Google Scholar
  121. [121]
    Zeng, W.; Miao, B.; Li, T. F.; Zhang, H.; Hussain, S.; Li, Y. Q.; Yu, W. J. Hydrothermal synthesis, characterization of h-WO3 nanowires and gas sensing of thin film sensor based on this powder. Thin Solid Films 2015, 584, 294–299.Google Scholar
  122. [122]
    Chen, H.; Hu, J. B.; Li, G. D.; Gao, Q.; Wei, C. D.; Zou, X. X. Porous Ga–In bimetallic oxide nanofibers with controllable structures for ultrasensitive and selective detection of formaldehyde. ACS Appl. Mater. Interfaces 2017, 9, 4692–4700.Google Scholar
  123. [123]
    Bai, S. L.; Tian, Y.; Zhao, Y. H.; Fu, H.; Tang, P. G.; Luo, R. X.; Li, D. Q.; Chen, A. F.; Liu, C. C. Construction of NiO@ZnSnO3 hierarchical microspheres decorated with NiO nanosheets for formaldehyde sensing. Sens. Actuators B Chem. 2018, 259, 908–916.Google Scholar
  124. [124]
    Meng, D.; Liu, D. Y.; Wang, G. S.; San, X. G.; Shen, Y. B.; Jin, Q.; Meng, F. L. CuO hollow microspheres self-assembled with nanobars: Synthesis and their sensing properties to formaldehyde. Vacuum 2017, 144, 272–280.Google Scholar
  125. [125]
    Chandiramouli, R.; Jeyaprakash, B. G. Operating temperature dependent ethanol and formaldehyde detection of spray deposited mixed CdO and MnO2 thin films. RSC Adv. 2015, 5, 43930–43940.Google Scholar
  126. [126]
    Chang, X. H.; Peng, M.; Yang, J. F.; Wang, T.; Liu, Y.; Zheng, J.; Li, X. G. A miniature room temperature formaldehyde sensor with high sensitivity and selectivity using CdSO4 modified ZnO nanoparticles. RSC Adv. 2015, 5, 75098–75104.Google Scholar
  127. [127]
    Hussain, S.; Liu, T. M.; Javed, M. S.; Aslam, N.; Zeng, W. Highly reactive 0D ZnS nanospheres and nanoparticles for formaldehyde gassensing properties. Sens. Actuators B Chem. 2017, 239, 1243–1250.Google Scholar
  128. [128]
    Park, H. J.; Kim, J.; Choi, N. J.; Song, H.; Lee, D. S. Nonstoichiometric Co-rich ZnCo2O4 hollow nanospheres for high performance formaldehyde detection at ppb levels. ACS Appl. Mater. Interfaces 2016, 8, 3233–3240.Google Scholar
  129. [129]
    Li, X. G.; Li, X. X.; Wang, J.; Lin, S. W. Highly sensitive and selective room-temperature formaldehyde sensors using hollow TiO2 microspheres. Sens. Actuators B Chem. 2015, 219, 158–163.Google Scholar
  130. [130]
    Lu, G. H.; Ocola, L. E.; Chen, J. H. Reduced graphene oxide for roomtemperature gas sensors. Nanotechnology 2009, 20, 445502.Google Scholar
  131. [131]
    Varghese, S. S.; Lonkar, S.; Singh, K. K.; Swaminathan, S.; Abdala, A. Recent advances in graphene based gas sensors. Sens. Actuators B Chem. 2015, 218, 160–183.Google Scholar
  132. [132]
    Fan, Y. Y.; Ma, W. G.; Han, D. X.; Gan, S. Y.; Dong, X. D.; Niu, L. Convenient recycling of 3D AgX/graphene aerogels (X = Br, Cl) for efficient photocatalytic degradation of water pollutants. Adv. Mater. 2015, 27, 3767–3773.Google Scholar
  133. [133]
    Li, X.; Wang, J.; Xie, D.; Xu, J. L.; Xia, Y.; Li, W. W.; Xiang, L.; Li, Z. M.; Xu, S. W.; Komarneni, S. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film. Nanotechnology 2017, 28, 325501.Google Scholar
  134. [134]
    Zhang, D. Z.; Liu, J. J.; Jiang, C. X.; Liu, A. M.; Xia, B. K. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B Chem. 2017, 240, 55–65.Google Scholar
  135. [135]
    Ye, Z. B.; Tai, H. L.; Xie, T.; Yuan, Z.; Liu, C. H.; Jiang, Y. D. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B Chem. 2016, 223, 149–156.Google Scholar
  136. [136]
    Vikrant, K.; Kumar, V.; Kim, K. H.; Kukkar, D. Metal-organic frameworks (MOFs): Potential and challenges for capture and abatement of ammonia. J. Mater. Chem. A 2017, 5, 22877–22896.Google Scholar
  137. [137]
    Kukkar, D.; Vellingiri, K.; Kim, K. H.; Deep, A. Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sens. Actuators B Chem. 2018, 273, 1346–1370.Google Scholar
  138. [138]
    Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I. M.; Kiener, C.; Moos, R. Metal-organic frameworks for sensing applications in the gas phase. Sensors 2009, 9, 1574–1589.Google Scholar
  139. [139]
    Chen, E. X.; Yang, H.; Zhang, J. Zeolitic imidazolate framework as formaldehyde gas sensor. Inorg. Chem. 2014, 53, 5411–5413.Google Scholar
  140. [140]
    Tian, H. L.; Fan, H. Q.; Li, M. M.; Ma, L. T. Zeolitic imidazolate framework coated ZnO nanorods as molecular sieving to improve selectivity of formaldehyde gas sensor. ACS Sens. 2016, 1, 243–250.Google Scholar
  141. [141]
    Zhou, W.; Wu, Y. P.; Zhao, J.; Dong, W. W.; Qiao, X. Q.; Hou, D. F.; Bu, X. H.; Li, D. S. Efficient gas-sensing for formaldehyde with 3D hierarchical Co3O4 derived from Co5-based MOF microcrystals. Inorg. Chem. 2017, 56, 14111–14117.Google Scholar
  142. [142]
    Zhang, Y. M.; Zhang, J.; Zhao, J. H.; Zhu, Z. Q.; Liu, Q. J. Ag-LaFeO3 fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Phys. Chem. Chem. Phys. 2017, 19, 6973–6980.Google Scholar
  143. [143]
    Zou, Z. J.; Qiu, Y.; Xie, C. S.; Xu, J. J.; Luo, Y. S.; Wang, C. L.; Yan, H. L. CdS/TiO2 nanocomposite film and its enhanced photoelectric responses to dry air and formaldehyde induced by visible light at room temperature. J. Alloys Compd. 2015, 645, 17–23.Google Scholar
  144. [144]
    Khan, A. A.; Rao, R. A. K.; Alam, N.; Shaheen, S. Formaldehyde sensing properties and electrical conductivity of newly synthesized polypyrrolezirconium( IV)selenoiodate cation exchange nanocomposite. Sens. Actuators B Chem. 2015, 211, 419–427.Google Scholar
  145. [145]
    Chang, X. H.; Wu, X. Q.; Guo, Y. R.; Zhao, Y. C.; Zheng, J.; Li, X. G. SnSO4 modified ZnO nanostructure for highly sensitive and selective formaldehyde detection. Sens. Actuators B Chem. 2018, 255, 1153–1159.Google Scholar
  146. [146]
    Mitsubayashi, K.; Nishio, G.; Sawai, M.; Saito, T.; Kudo, H.; Saito, H.; Otsuka, K.; Noguer, T.; Marty, J. L. A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sens. Actuators B Chem. 2008, 130, 32–37.Google Scholar
  147. [147]
    Srinives, S.; Sarkar, T.; Mulchandani, A. Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sens. Actuators B Chem. 2014, 194, 255–259.Google Scholar
  148. [148]
    Liu, L. P.; Li, X. G.; Dutta, P. K.; Wang, J. Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination. Sens. Actuators B Chem. 2013, 185, 1–9.Google Scholar
  149. [149]
    Li, X.; Jiang, Y. D.; Tai, H. L.; Xie, G. Z.; Dan, W. C. The fabrication and optimization of OTFT formaldehyde sensors based on poly(3- hexythiophene)/ZnO composite films. Sci. China Technol. Sci. 2013, 56, 1877–1882.Google Scholar
  150. [150]
    Wang, J. J.; Zhan, D.; Wang, K.; Hang, W. W. The detection of formaldehyde using microelectromechanical acoustic resonator with multiwalled carbon nanotubes-polyethyleneimine composite coating. J. Micromech. Microeng. 2018, 28, 015003.Google Scholar
  151. [151]
    Hu, W. L.; Chen, S. Y.; Liu, L. T.; Ding, B.; Wang, H. P. Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens. Actuators B Chem. 2011, 157, 554–559.Google Scholar
  152. [152]
    Iqbal, N.; Afzal, A.; Mujahid, A. Layer-by-layer assembly of lowtemperature- imprinted poly(methacrylic acid)/gold nanoparticle hybrids for gaseous formaldehyde mass sensing. RSC Adv. 2014, 4, 43121–43130.Google Scholar
  153. [153]
    Wang, X. F.; Ding, B.; Sun, M.; Yu, J. Y.; Sun, G. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens. Actuators B Chem. 2010, 144, 11–17.Google Scholar
  154. [154]
    Zhang, C. Y.; Wang, X. F.; Lin, J. Y.; Ding, B.; Yu, J. Y.; Pan, N. Nanoporous polystyrene fibers functionalized by polyethyleneimine for enhanced formaldehyde sensing. Sens. Actuators B Chem. 2011, 152, 316–323.Google Scholar
  155. [155]
    Dong, C. J.; Li, Q.; Chen, G.; Xiao, X. C.; Wang, Y. D. Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sens. Actuators B Chem. 2015, 220, 171–179.Google Scholar
  156. [156]
    Choi, N. J.; Park, H. J.; Jung, M. Y.; Lee, D. S.; Kim, J. Y.; Kim, J. M.; Song, H. Ultrasensitive formaldehyde gas sensors based on a hollow assembly and its 3-dimensional network formation of single-crystalline Co3O4 nanoparticles. In Proceedings of 2015 IEEE SENSORS, Busan, Republic of Korea, 2015, pp 1–3.Google Scholar
  157. [157]
    Fang, F.; Bai, L.; Song, D. S.; Yang, H. P.; Sun, X. M.; Sun, H. Y.; Zhu, J. Ag-modified In2O3/ZnO nanobundles with high formaldehyde gas-sensing performance. Sensors 2015, 15, 20086–20096.Google Scholar
  158. [158]
    Ding, C.; Ma, Y. L.; Lai, X. Y.; Yang, Q. F.; Xue, P.; Hu, F.; Geng, W. C. Ordered large-pore mesoporous CR2O3 with ultrathin framework for formaldehyde sensing. ACS Appl. Mater. Interfaces 2017, 9, 18170–18177.Google Scholar
  159. [159]
    Chuang, W. Y.; Yang, S. Y.; Wu, W. J.; Lin, C. T. A room-temperature operation formaldehyde sensing material printed using blends of reduced graphene oxide and poly(methyl methacrylate). Sensors 2015, 15, 28842–28853.Google Scholar
  160. [160]
    Li, Y. H.; Zhang, Q. Q.; Li, X. S.; Bai, H.; Li, W. T.; Zeng, T. T.; Xi, G. C. Ligand-free and size-controlled synthesis of oxygen vacancy-rich WO3–x quantum dots for efficient room-temperature formaldehyde gas sensing. RSC Adv. 2016, 6, 95747–95752.Google Scholar
  161. [161]
    Xiao, X. C.; Xing, X. X.; Han, B. Q.; Deng, D. Y.; Cai, X. Y.; Wang, Y. D. Enhanced formaldehyde sensing properties of SnO2 nanorods coupled with Zn2SnO4. RSC Adv. 2015, 5, 42628–42636.Google Scholar
  162. [162]
    Castro-Hurtado, I.; Gonzalez-Ch á varri, J.; Morandi, S.; Samà, J.; Romano-Rodriguez, A.; Castaño, E.; Mandayo, G. G. Formaldehyde sensing mechanism of SnO2 nanowires grown on-chip by sputtering techniques. RSC Adv. 2016, 6, 18558–18566.Google Scholar
  163. [163]
    Liu, C. B.; Wang, X. S.; Xie, F.; Liu, L.; Ruan, S. P. Fabrication of Smdoped porous In2O3 nanotubes and their excellent formaldehyde-sensing properties. J. Mater. Sci. Mater. Electron. 2016, 27, 9870–9876.Google Scholar
  164. [164]
    Zhang, G. C.; Han, X.; Bian, W. W.; Zhan, J. H.; Ma, X. C. Facile synthesis and high formaldehyde-sensing performance of NiO-SnO2 hybrid nanospheres. RSC Adv. 2016, 6, 3919–3926.Google Scholar
  165. [165]
    Upadhyay, S. B.; Mishra, R. K.; Sahay, P. P. Cr-doped WO3 nanosheets: Structural, optical and formaldehyde sensing properties. Ceram. Int. 2016, 42, 15301–15310.Google Scholar
  166. [166]
    Wei, Q.; Song, P.; Li, Z. Q.; Yang, Z. X.; Wang, Q. Hierarchical peony-like Sb-doped SnO2 nanostructures: Synthesis, characterization and HCHO sensing properties. Mater. Lett. 2017, 191, 173–177.Google Scholar
  167. [167]
    Chen, Z. W.; Hong, Y. Y.; Lin, Z. D.; Liu, L. M.; Zhang, X. W. Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electron. Mater. Lett. 2017, 13, 270–276.Google Scholar
  168. [168]
    Xiang, X.; Zhu, D. C.; Wang, D. J. Enhanced formaldehyde gas sensing properties of La-doped SnO2 nanoparticles prepared by ball-milling solid chemical reaction method. J. Mater. Sci. Mater. Electron. 2016, 27, 7425–7432.Google Scholar
  169. [169]
    Zhang, Y.; Xie, L. Z.; Yuan, C. X.; Zhang, C. L.; Liu, S.; Peng, Y. Q.; Li, H. R.; Zhang, M. A ppb-level formaldehyde gas sensor based on rose-like nickel oxide nanoparticles prepared using electrodeposition process. Nano 2016, 11, 1650009.Google Scholar
  170. [170]
    Zhang, Y.; Jiang, B.; Yuan, M. J.; Li, P. W.; Li, W.; Zheng, X. J. Formaldehyde-sensing properties of LaFeO3 particles synthesized by citrate sol–gel method. J. Sol-Gel Sci. Technol. 2016, 79,167–175.Google Scholar
  171. [171]
    Cao, J.; Zhang, H. M.; Yan, X. Q. Facile fabrication and enhanced formaldehyde gas sensing properties of nanoparticles-assembled chainlike NiO architectures. Mater. Lett. 2016, 185, 40–42.Google Scholar
  172. [172]
    Xing, X. X.; Xiao, X. C.; Wang, L. H.; Wang, Y. D. Highly sensitive formaldehyde gas sensor based on hierarchically porous Ag-loaded ZnO heterojunction nanocomposites. Sens. Actuators B Chem. 2017, 247, 797–806.Google Scholar
  173. [173]
    Yang, M. Q.; He, J. H. Graphene oxide as quartz crystal microbalance sensing layers for detection of formaldehyde. Sens. Actuators B Chem. 2016, 228, 486–490.Google Scholar
  174. [174]
    Tai, H. L.; Bao, X. H.; He, Y. F.; Du, X. S.; Xie, G. Z.; Jiang, Y. D. Enhanced formaldehyde-sensing performances of mixed polyethyleneiminemultiwalled carbon nanotubes composite films on quartz crystal microbalance. IEEE Sens. J. 2015, 15, 6904–6911.Google Scholar
  175. [175]
    Güntner, A. T.; Koren, V.; Chikkadi, K.; Righettoni, M.; Pratsinis, S. E. E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 2016, 1, 528–535.Google Scholar
  176. [176]
    Wang, L. Y.; Yu, Y. P.; Xiang, Q.; Xu, J.; Cheng, Z. X.; Xu, J. Q. PODScovered PDA film based formaldehyde sensor for avoiding humidity false response. Sens. Actuators B Chem. 2018, 255, 2704–2712.Google Scholar
  177. [177]
    Wang, X. Q.; Si, Y.; Mao, X.; Li, Y.; Yu, J. Y.; Wang, H. P.; Ding, B. Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. Analyst 2013, 138, 5129–5136.Google Scholar
  178. [178]
    Korotcenkov, G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 2007, 139, 1–23.Google Scholar
  179. [179]
    Kauffman, D. R.; Star, A. Carbon nanotube gas and vapor sensors. Angew. Chem., Int. Ed. 2008, 47, 6550–6570.Google Scholar
  180. [180]
    Singh, E.; Meyyappan, M.; Nalwa, H. S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586.Google Scholar
  181. [181]
    Bi, A. Y.; Yang, S. Q.; Liu, M.; Wang, X. B.; Liao, W. H.; Zeng, W. B. Fluorescent probes and materials for detecting formaldehyde: From laboratory to indoor for environmental and health monitoring. RSC Adv. 2017, 7, 36421–36432.Google Scholar
  182. [182]
    Xu, X. Y.; Yan, B. Eu(III)-functionalized ZnO@MOF heterostructures: Integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. J. Mater. Chem. A 2017, 5, 2215–2223.Google Scholar
  183. [183]
    Szulczyński, B.; Gębicki, J. Currently commercially available chemical sensors employed for detection of volatile organic compounds in outdoor and indoor air. Environments 2017, 4, 21.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Deepak Kukkar
    • 1
    • 2
  • Kowsalya Vellingiri
    • 3
  • Rajnish Kaur
    • 4
  • Sanjeev Kumar Bhardwaj
    • 4
  • Akash Deep
    • 4
    Email author
  • Ki-Hyun Kim
    • 2
    Email author
  1. 1.Department of NanotechnologySri Guru Granth Sahib World UniversityFatehgarh SahibIndia
  2. 2.Department of Civil and Environmental EngineeringHanyang UniversitySeoulRepublic of Korea
  3. 3.Environmental and Water Resources Engineering Division, Department of Civil EngineeringIIT MadrasChennaiIndia
  4. 4.Central Scientific Instruments Organization (CSIR-CSIO)ChandigarhIndia

Personalised recommendations