Advertisement

Nano Research

, Volume 11, Issue 10, pp 5049–5064 | Cite as

Biomedical applications of magneto-responsive scaffolds

  • Adedokun A. Adedoyin
  • Adam K. Ekenseair
Review Article

Abstract

Stimuli-responsive biomaterials, capable of responding on-demand to changes in their local environment, have become a subject of interest in the field of regenerative medicine. Magneto-responsive biomaterials, which can be manipulated spatiotemporally via an external magnetic field, have emerged as promising candidates as active scaffolds for advanced drug delivery and tissue regeneration applications. These specialized biomaterials can be synthesized by physically and/or chemically incorporating magnetic nanoparticles into the biomaterial structure. However, despite their promising impact on the future of regenerative medicine, magneto-responsive biomaterials still have several limitations that need to be overcome before they can be implemented clinically in a reliable manner, as predicting their behavior and biocompatibility remains an ongoing challenge. This review article will focus on discussing the current fabrication methods used to synthesize magneto-responsive materials, efforts to predict and characterize magneto-responsive biomaterial behavior, and the application of magneto-responsive biomaterials as controlled drug delivery systems, tissue engineering scaffolds, and artificial muscles.

Keywords

biomaterials magnetic nanoparticles magneto-responsive scaffolds regenerative medicine stimuli-responsive materials tissue engineering 

References

  1. [1]
    Qui, Y.; Park, K. Environment–sensitive hydrogels for drug delivery. Adv. Drug. Deliv. Rev. 2012, 64 Suppl, 49–60.Google Scholar
  2. [2]
    Li, Y. H.; Huang, G. Y.; Zhang, X. H.; Li, B. Q.; Chen, Y. M.; Lu, T. L.; Lu, T. J.; Xu, F. Magnetic hydrogels and their potential biomedical applications. Adv. Funct. Mater. 2013, 23, 660–672.CrossRefGoogle Scholar
  3. [3]
    Erb, R. M.; Martin, J. J.; Soheilian, R.; Pan, C. Z.; Barber, J. R. Actuating soft matter with magnetic torque. Adv. Funct. Mater. 2016, 26, 3859–3880.CrossRefGoogle Scholar
  4. [4]
    Schmaljohann, D. Thermo–and pH–responsive polymers in drug delivery. Adv. Drug. Deliv. Rev. 2006, 58, 1655–1670.CrossRefGoogle Scholar
  5. [5]
    Nguyen, K. T.; West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials 2002, 23, 4307–4314.CrossRefGoogle Scholar
  6. [6]
    Bawa, P.; Pillay, V.; Choonara, Y. E.; du Toit, L. C. Stimuli–responsive polymers and their applications in drug delivery. Biomed. Mater. 2009, 4, 022001.CrossRefGoogle Scholar
  7. [7]
    Liu, F.; Urban, M. W. Recent advances and challenges in designing stimuli–responsive polymers. Prog. Polym. Sci. 2010, 35, 3–23.CrossRefGoogle Scholar
  8. [8]
    Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46.CrossRefGoogle Scholar
  9. [9]
    Gaharwar, A. K.; Peppas, N. A.; Khademhosseini, A. Nanocomposite hydrogels for biomedical applications. Biotechnol. Bioeng. 2014, 111, 441–453.CrossRefGoogle Scholar
  10. [10]
    Shubayev, V. I.; Pisanic II, T. R.; Jin, S. Magnetic nanoparticles for theragnostics. Adv. Drug. Deliv. Rev. 2009, 61, 467–477.CrossRefGoogle Scholar
  11. [11]
    Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.CrossRefGoogle Scholar
  12. [12]
    Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 2003, 36, R167–R181.CrossRefGoogle Scholar
  13. [13]
    Ito, A.; Ino, K.; Hayashida, M.; Kobayashi, T.; Matsunuma, H.; Kagami, H.; Ueda, M.; Honda, H. Novel methodology for fabrication of tissue–engineered tubular constructs using magnetite nanoparticles and magnetic force. Tissue Eng. 2005, 11, 1553–1561.CrossRefGoogle Scholar
  14. [14]
    Ito, A.; Takizawa, Y.; Honda, H.; Hata, K. I.; Kagami, H.; Ueda, M.; Kobayashi, T. Tissue engineering using magnetite nanoparticles and magnetic force: Heterotypic layers of cocultured hepatocytes and endothelial cells. Tissue Eng. 2004, 10, 833–840.CrossRefGoogle Scholar
  15. [15]
    Ito, A.; Hibino, E.; Kobayashi, C.; Terasaki, H.; Kagami, H.; Ueda, M.; Kobayashi, T.; Honda, H. Construction and delivery of tissue–engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng. 2005, 11, 489–496.CrossRefGoogle Scholar
  16. [16]
    Hughes, S.; El Haj, A. J.; Dobson, J. Magnetic micro–and nanoparticle mediated activation of mechanosensitive ion channels. Med. Eng. Phys. 2005, 27, 754–762.CrossRefGoogle Scholar
  17. [17]
    Santra, S.; Tapec, R.; Theodoropoulou, N.; Dobson, J.; Hebard, A.; Tan, W. H. Synthesis and characterization of silica–coated iron oxide nanoparticles in microemulsion: The effect of nonionic surfactants. Langmuir 2001, 17, 2900–2906.CrossRefGoogle Scholar
  18. [18]
    Dobson, J. Magnetic nanoparticles for drug delivery. Drug. Dev. Res 2006, 67, 55–60.CrossRefGoogle Scholar
  19. [19]
    Singh, N.; Jenkins, G. J. S.; Asadi, R.; Doak, S. H. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010, 1, 5358.CrossRefGoogle Scholar
  20. [20]
    Wang, L.; Wang, Z. J.; Li, X. M.; Zhang, Y.; Yin, M.; Li, J.; Song, H. Y.; Shi, J. Y.; Ling, D. S.; Wang, L. H. et al. Deciphering active biocompatibility of iron oxide nanoparticles from their intrinsic antagonism. Nano Res. 2018, 11, 2746–2755.CrossRefGoogle Scholar
  21. [21]
    Janko, C.; Zaloga, J.; Pöttler, M.; Dürr, S.; Eberbeck, D.; Tietze, R.; Lyer, S.; Alexiou, C. Strategies to optimize the biocompatibility of iron oxide nanoparticles—“SPIONs safe by design”. J. Magn. Magn. Mater. 2017, 431, 281–284.CrossRefGoogle Scholar
  22. [22]
    Jain, T. K.; Reddy, M. K.; Morales, M. A.; Leslie–Pelecky, D. L.; Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm. 2008, 5, 316–327.CrossRefGoogle Scholar
  23. [23]
    Zhao, X. H.; Kim, J.; Cezar, C. A.; Huebsch, N.; Lee, K.; Bouhadir, K.; Mooney, D. J. Active scaffolds for on–demand drug and cell delivery. Proc. Natl. Acad. Sci. USA 2011, 108, 67–72.CrossRefGoogle Scholar
  24. [24]
    Kang, T.; Li, F. Y.; Baik, S.; Shao, W.; Ling, D. S.; Hyeon, T. Surface design of magnetic nanoparticles for stimuliresponsive cancer imaging and therapy. Biomaterials 2017, 136, 98–114.CrossRefGoogle Scholar
  25. [25]
    Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug. Deliv. Rev. 2008, 60, 1252–1265.CrossRefGoogle Scholar
  26. [26]
    Tian, X.; Zhang, L. C.; Yang, M.; Bai, L.; Dai, Y. H.; Yu, Z. Q.; Pan, Y. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018, 10, e1476.CrossRefGoogle Scholar
  27. [27]
    Sapir, Y.; Cohen, S.; Friedman, G.; Polyak, B. The promotion of in vitro vessel–like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials 2012, 33, 4100–4109.CrossRefGoogle Scholar
  28. [28]
    Liu, H. X.; Wang, C. Y.; Gao, Q. X.; Liu, X. X.; Tong, Z. Magnetic hydrogels with supracolloidal structures prepared by suspension polymerization stabilized by Fe2O3 nanoparticles. Acta Biomater. 2010, 6, 275–281.CrossRefGoogle Scholar
  29. [29]
    Fuhrer, R.; Hofmann, S.; Hild, N.; Vetsch, J. R.; Herrmann, I. K.; Grass, R. N.; Stark, W. J. Pressureless mechanical induction of stem cell differentiation is dose and frequency dependent. PLoS One 2013, 8, e81362.CrossRefGoogle Scholar
  30. [30]
    Bannerman, A. D.; Li, X. Y.; Wan, W. K. A “degradable” poly(vinyl alcohol) iron oxide nanoparticle hydrogel. Acta Biomater. 2017, 58, 376–385.CrossRefGoogle Scholar
  31. [31]
    Ouyang, K.; Zhu, C. H.; Zhao, Y.; Wang, L. C.; Xie, S.; Wang, Q. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids. Appl. Surf. Sci. 2015, 355, 562–569.CrossRefGoogle Scholar
  32. [32]
    Hu, S. H.; Liu, T. Y.; Tsai, C. H.; Chen, S. Y. Preparation and characterization of magnetic ferroscaffolds for tissue engineering. J. Magn. Magn. Mater. 2007, 310, 2871–2873.CrossRefGoogle Scholar
  33. [33]
    Hernández, R.; Mijangos, C. In situ synthesis of magnetic iron oxide nanoparticles in thermally responsive alginate–poly (N–isopropylacrylamide) semi–interpenetrating polymer networks. Macromol. Rapid Commun. 2009, 30, 176–181.CrossRefGoogle Scholar
  34. [34]
    Wang, Y. L.; Li, B. Q.; Zhou, Y.; Jia, D. C. Chitosan–induced synthesis of magnetite nanoparticles via iron ions assembly. Polym. Adv. Technol. 2008, 19, 1256–1261.CrossRefGoogle Scholar
  35. [35]
    Ilg, P. Stimuli–responsive hydrogels cross–linked by magnetic nanoparticles. Soft Matter 2013, 9, 3465–3468.CrossRefGoogle Scholar
  36. [36]
    Ekenseair, A. K.; Boere, K. W. M.; Tzouanas, S. N.; Vo, T. N.; Kasper, F. K.; Mikos, A. G. Synthesis and characterization of thermally and chemically gelling injectable hydrogels for tissue engineering. Biomacromolecules 2012, 13, 1908–1915.CrossRefGoogle Scholar
  37. [37]
    Bock, N.; Riminucci, A.; Dionigi, C.; Russo, A.; Tampieri, A.; Landi, E.; Goranov, V. A.; Marcacci, M.; Dediu, V. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010, 6, 786–796.CrossRefGoogle Scholar
  38. [38]
    Wahl, D.; Czernuszka, J. Collagen–hydroxyapatite composites for hard tissue repair. Eur. Cells Mater. 2006, 11, 43–56.CrossRefGoogle Scholar
  39. [39]
    Muschler, G. F.; Nakamoto, C.; Griffith, L. G. Engineering principles of clinical cell–based tissue engineering. J. Bone Joint Surg. Am. 2004, 86–A, 1541–1558.Google Scholar
  40. [40]
    Orr, A. W.; Helmke, B. P.; Blackman, B. R.; Schwartz, M. A. Mechanisms of mechanotransduction. Dev. Cell 2006, 10, 11–20.CrossRefGoogle Scholar
  41. [41]
    Silva, E. D.; Gonçalves, A. I.; Santos, L. J.; Rodrigues, M. T.; Gomes, M. E. Magnetic–responsive materials for tissue engineering and regenerative medicine. In Smart Materials for Tissue Engineering: Fundamental Principles; Wang, Q., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2017.Google Scholar
  42. [42]
    Glogauer, M.; Ferrier, J.; McCulloch, C. Magnetic fields applied to collagen–coated ferric oxide beads induce stretchactivated Ca2+ flux in fibroblasts. Am. J. Physiol. 1995, 269, C1093–C1104.CrossRefGoogle Scholar
  43. [43]
    Glogauer, M.; Ferrier, J. A new method for application of force to cells via ferric oxide beads. Pflügers Arch. 1997, 435, 320–327.CrossRefGoogle Scholar
  44. [44]
    Pommerenke, H.; Schreiber, E.; Dürr, F.; Nebe, B.; Hahnel, C.; Möller, W.; Rychly, J. Stimulation of integrin receptors using a magnetic drag force device induces an intracellular free calcium response. Eur. J. Cell Biol. 1996, 70, 157–164.Google Scholar
  45. [45]
    Plouffe, B. D.; Lewis, L. H.; Murthy, S. K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 2011, 5, 013413.CrossRefGoogle Scholar
  46. [46]
    Lewis, L. H.; Barua, R.; Lejeune, B. Developing magnetofunctionality: Coupled structural and magnetic phase transition in AlFe2B2. J. Alloys Compd. 2015, 650, 482–488.CrossRefGoogle Scholar
  47. [47]
    McCain, M. L.; Parker, K. K. Mechanotransduction: The role of mechanical stress, myocyte shape, and cytoskeletal architecture on cardiac function. Pflugers Arch. 2011, 462, 89–104.CrossRefGoogle Scholar
  48. [48]
    Nava, M. M.; Raimondi, M. T.; Pietrabissa, R. Controlling self–renewal and differentiation of stem cells via mechanical cues. J. Biomed. Biotechnol. 2012, 2012, 797410.CrossRefGoogle Scholar
  49. [49]
    Henstock, J. R.; Rotherham, M.; Rashidi, H.; Shakesheff, K. M.; El Haj, A. J. Remotely activated mechanotransduction via magnetic nanoparticles promotes mineralization synergistically with bone morphogenetic protein 2: Applications for injectable cell therapy. Stem Cells Transl. Med. 2014, 3, 1363–1374.CrossRefGoogle Scholar
  50. [50]
    Lee, K. M.; Tsai, K. Y.; Wang, N.; Ingber, D. E. Extracellular matrix and pulmonary hypertension: Control of vascular smooth muscle cell contractility. Am. J. Physiol. 1998, 274, H76–H82.CrossRefGoogle Scholar
  51. [51]
    Sapir–Lekhovitser, Y.; Rotenberg, M. Y.; Jopp, J.; Friedman, G.; Polyak, B.; Cohen, S. Magnetically actuated tissue engineered scaffold: Insights into mechanism of physical stimulation. Nanoscale 2016, 8, 3386–3399.CrossRefGoogle Scholar
  52. [52]
    Hughes, S.; McBain, S.; Dobson, J.; El Haj, A. J. Selective activation of mechanosensitive ion channels using magnetic particles. J. Roy. Soc. Interface 2008, 5, 855–863.CrossRefGoogle Scholar
  53. [53]
    Li, J. Y.; Mooney, D. J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater. 2016, 1, 16071.CrossRefGoogle Scholar
  54. [54]
    Bettini, S.; Bonfrate, V.; Syrgiannis, Z.; Sannino, A.; Salvatore, L.; Madaghiele, M.; Valli, L.; Giancane, G. Biocompatible collagen paramagnetic scaffold for controlled drug release. Biomacromolecules 2015, 16, 2599–2608.CrossRefGoogle Scholar
  55. [55]
    Peters, C.; Hoop, M.; Pané, S.; Nelson, B. J.; Hierold, C. Degradable magnetic composites for minimally invasive interventions: Device fabrication, targeted drug delivery, and cytotoxicity tests. Adv. Mater. 2016, 28, 533–538.CrossRefGoogle Scholar
  56. [56]
    Lu, Y.; Sun, W. J.; Gu, Z. Stimuli–responsive nanomaterials for therapeutic protein delivery. J. Control. Release 2014, 194, 1–19.CrossRefGoogle Scholar
  57. [57]
    Di, J.; Yu, J. C.; Wang, Q.; Yao, S. S.; Suo, D. J.; Ye, Y. Q.; Pless, M.; Zhu, Y.; Jing, Y.; Gu, Z. Ultrasound–triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules. Nano Res. 2017, 10, 1393–1402.CrossRefGoogle Scholar
  58. [58]
    Miyata, T.; Uragami, T.; Nakamae, K. Biomolecule–sensitive hydrogels. Adv. Drug Deliv. Rev. 2002, 54, 79–98.CrossRefGoogle Scholar
  59. [59]
    Veiseh, O.; Tang, B. C.; Whitehead, K. A.; Anderson, D. G.; Langer, R. Managing diabetes with nanomedicine: Challenges and opportunities. Nat. Rev. Drug Discov. 2015, 14, 45–57.CrossRefGoogle Scholar
  60. [60]
    Chan, A.; Orme, R. P.; Fricker, R. A.; Roach, P. Remote and local control of stimuli responsive materials for therapeutic applications. Adv. Drug Deliv. Rev. 2013, 65, 497–514.CrossRefGoogle Scholar
  61. [61]
    Kost, J.; Noecker, R.; Kunica, E.; Langer, R. Magnetically controlled release systems: Effect of polymer composition. J. Biomed. Mater. Res. 1985, 19, 935–940.CrossRefGoogle Scholar
  62. [62]
    Kost, J.; Wolfrum, J.; Langer, R. Magnetically enhanced insulin release in diabetic rats. J. Biomed. Mater. Res. 1987, 21, 1367–1373.CrossRefGoogle Scholar
  63. [63]
    Saslawski, O.; Weingarten, C.; Benoit, J. P.; Couvreur, P. Magnetically responsive microspheres for the pulsed delivery of insulin. Life Sci. 1988, 42, 1521–1528.CrossRefGoogle Scholar
  64. [64]
    Saslawski, O.; Couvreur, P.; Peppas, N. Alginate magnetic release systems: Crosslinked structure, swelling and release studies. In Proceedings of the International Symposium on Controlled Release of Bioactive Materials, Basel, Switzerland, 1988, pp 46.Google Scholar
  65. [65]
    Casolaro, M.; Casolaro, I. Pulsed release of antidepressants from nanocomposite hydrogels. Biol., Eng. Med. 2017, 2, 1–8.Google Scholar
  66. [66]
    Kara, M. O. P.; Ekenseair, A. K. Free epoxide content mediates encapsulated cell viability and activity through protein interactions in a thermoresponsive, in situ forming hydrogel. Biomacromolecules 2017, 18, 1473–1481.CrossRefGoogle Scholar
  67. [67]
    Rewar, S.; Bansal, B. K.; Singh, C. J.; Sharma, A. K. Pulsatile drug delivery release technologies: An overview. Int. J. Res. Dev. Pharm. Life Sci. 2015, 4, 1386–1393.Google Scholar
  68. [68]
    Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Selfasfsembled hyaluronic acid nanoparticles for pH–sensitive release of doxorubicin: Synthesis and in vitro characterization. J. Biomed. Nanotechnol. 2017, 13, 1058–1068.CrossRefGoogle Scholar
  69. [69]
    Zheng, H.; Yin, L. Q.; Zhang, X. Q.; Zhang, H.; Hu, R.; Yin, Y. H.; Qiu, T.; Xiong, X.; Wang, Q. Redox sensitive shell and core crosslinked hyaluronic acid nanocarriers for tumor–targeted drug delivery. J. Biomed. Nanotechnol. 2016, 12, 1641–1653.CrossRefGoogle Scholar
  70. [70]
    Hu, R.; Zheng, H.; Cao, J.; Davoudi, Z.; Wang, Q. Synthesis and in vitro characterization of carboxymethyl chitosan–CBA–doxorubicin conjugate nanoparticles as pH–sensitive drug delivery systems. J. Biomed. Nanotechnol. 2017, 13, 1097–1105.CrossRefGoogle Scholar
  71. [71]
    Zhang, X. Q; Zhang, H.; Yin, L. Q.; Hu, R.; Qiu, T.; Yin, Y. H.; Xiong, X.; Zheng, H.; Wang, Q. A pH–sensitive nanosystem based on carboxymethyl chitosan for tumortargeted delivery of daunorubicin. J. Biomed. Nanotechnol. 2016, 12, 1688–1698.CrossRefGoogle Scholar
  72. [72]
    Chang, B. S.; Sha, X. Y.; Guo, J.; Jiao, Y. F.; Wang, C. C.; Yang, W. L. Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release. J. Mater. Chem. 2011, 21, 9239–9247.CrossRefGoogle Scholar
  73. [73]
    Xie, W. S.; Gao, Q.; Guo, Z. H.; Wang, D.; Gao, F.; Wang, X. M.; Wei, Y.; Zhao, L. Y. Injectable and self–healing thermosensitive magnetic hydrogel for asynchronous control release of doxorubicin and docetaxel to treat triple–negative breast cancer. ACS Appl. Mater. Inter. 2017, 9, 33660–33673.CrossRefGoogle Scholar
  74. [74]
    Meenach, S. A.; Shapiro, J. M.; Hilt, J. Z.; Anderson, K. W. Characterization of PEG–iron oxide hydrogel nanocomposites for dual hyperthermia and paclitaxel delivery. J. Biomat. Sci., Polym. E 2013, 24, 1112–1126.CrossRefGoogle Scholar
  75. [75]
    Sneed, P. K.; Stauffer, P. R.; McDermott, M. W.; Diederich, C. J.; Lamborn, K. R.; Prados, M. D.; Chang, S.; Weaver, K. A.; Spry, L.; Malec, M. K. et al. Survival benefit of hyperthermia in a prospective randomized trial of brachytherapy boost ± hyperthermia for glioblastoma multiforme. Int. J. Radiat. Oncol. Biol. Phys. 1998, 40, 287–295.CrossRefGoogle Scholar
  76. [76]
    Falk, M. H.; Issels, R. D. Hyperthermia in oncology. Int. J. Hyperther. 2001, 17, 1–18.CrossRefGoogle Scholar
  77. [77]
    Markides, H.; McLaren, J. S.; El Haj, A. J. Overcoming translational challenges—The delivery of mechanical stimuli in vivo. Int. J. Biochem. Cell Biol. 2015, 69, 162–172.CrossRefGoogle Scholar
  78. [78]
    Meng, J.; Xiao, B.; Zhang, Y.; Liu, J.; Xue, H. D.; Lei, J.; Kong, H.; Huang, Y. G.; Jin, Z. Y.; Gu, N. et al. Superparamagnetic responsive nanofibrous scaffolds under static magnetic field enhance osteogenesis for bone repair in vivo. Sci. Rep. 2013, 3, 2655.CrossRefGoogle Scholar
  79. [79]
    Sun, Y. B.; Chen, C. S.; Fu, J. P. Forcing stem cells to behave: A biophysical perspective of the cellular microenvironment. Ann. Rev. Biophys. 2012, 41, 519–542.CrossRefGoogle Scholar
  80. [80]
    Xu, H. Y.; Gu, N. Magnetic responsive scaffolds and magnetic fields in bone repair and regeneration. Front. Mater. Sci. 2014, 8, 20–31.CrossRefGoogle Scholar
  81. [81]
    Zhang, H.; Xia, J. Y.; Pang, X. L.; Zhao, M.; Wang, B. Q.; Yang, L. L.; Wan, H. S.; Wu, J. B.; Fu, S. Z. Magnetic nanoparticle–loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng.: C 2016, 73, 537–543.CrossRefGoogle Scholar
  82. [82]
    Panseri, S.; Russo, A.; Giavaresi, G.; Sartori, M.; Veronesi, F.; Fini, M.; Salter, D.; Ortolani, A.; Strazzari, A.; Visani, A. et al. Innovative magnetic scaffolds for orthopedic tissue engineering. J. Biomed. Mater. Res. A 2012, 100, 2278–2286.Google Scholar
  83. [83]
    Hajinasab, A.; Saber–Samandari, S.; Ahmadi, S.; Alamara, K. Preparation and characterization of a biocompatible magnetic scaffold for biomedical engineering. Mater. Chem. Phys. 2018, 204, 378–387.CrossRefGoogle Scholar
  84. [84]
    Harvey, E. J.; Giannoudis, P. V.; Martineau, P. A.; Lansdowne, J. L.; Dimitriou, R.; Moriarty, T. F.; Richards, R. G. Preclinical animal models in trauma research. J. Orthop. Trauma 2011, 25, 488–493.CrossRefGoogle Scholar
  85. [85]
    Park, H.; Temenoff, J. S.; Holland, T. A.; Tabata, Y.; Mikos, A. G. Delivery of TGF–β1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials 2005, 26, 7095–7103.CrossRefGoogle Scholar
  86. [86]
    Levenberg, S.; Rouwkema, J.; Macdonald, M.; Garfein, E. S.; Kohane, D. S.; Darland, D. C.; Marini, R.; van Blitterswijk, C. A.; Mulligan, R. C.; D'Amore, P. A. Engineering vascularized skeletal muscle tissue. Nat. Biotechnol. 2005, 23, 879–884.CrossRefGoogle Scholar
  87. [87]
    Sun, T.; Shi, Q.; Huang, Q.; Wang, H. P.; Xiong, X. L.; Hu, C. Z.; Fukuda, T. Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular–like structures. Acta Biomater. 2018, 66, 272–281.CrossRefGoogle Scholar
  88. [88]
    Liu, Y. Q.; Xu, K. G.; Chang, Q.; Darabi, M. A.; Lin, B. J.; Zhong, W.; Xing, M. Highly flexible and resilient elastin hybrid cryogels with shape memory, injectability, conductivity, and magnetic responsive properties. Adv. Mater. 2016, 28, 7758–7767.CrossRefGoogle Scholar
  89. [89]
    Bonfrate, V.; Manno, D.; Serra, A.; Salvatore, L.; Sannino, A.; Buccolieri, A.; Serra, T.; Giancane, G. Enhanced electrical conductivity of collagen films through long–range aligned iron oxide nanoparticles. J. Colloid Interf. Sci. 2017, 501, 185–191.CrossRefGoogle Scholar
  90. [90]
    Steele, L.; Margolis, G.; Cohen, S.; Polyak, B. Applications of magnetic–responsive materials for cardiovascular tissue engineering. In Smart Materials for Tissue Engineering: Applications; Wang, Q., Ed.; The Royal Society of Chemistry: London, UK, 2017.Google Scholar
  91. [91]
    Antman–Passig, M.; Shefi, O. Remote magnetic orientation of 3D collagen hydrogels for directed neuronal regeneration. Nano Lett. 2016, 16, 2567–2573.CrossRefGoogle Scholar
  92. [92]
    Zrinyi, M. Intelligent polymer gels controlled by magnetic fields. Colloid Polym. Sci. 2000, 278, 98–103.CrossRefGoogle Scholar
  93. [93]
    Szabó, D.; Szeghy, G.; Zrínyi, M. Shape transition of magnetic field sensitive polymer gels. Macromolecules 1998, 31, 6541–6548.CrossRefGoogle Scholar
  94. [94]
    Zrínyi, M.; Szabó, D.; Kilian, H. G. Kinetics of the shape change of magnetic field sensitive polymer gels. Polym. Gels Netw. 1998, 6, 441–454.CrossRefGoogle Scholar
  95. [95]
    Satarkar, N. S.; Hilt, J. Z. Hydrogel nanocomposites as remote–controlled biomaterials. Acta Biomater. 2008, 4, 11–16.CrossRefGoogle Scholar
  96. [96]
    Farshad, M.; Le Roux, M. Compression properties of magnetostrictive polymer composite gels. Polym. Test. 2005, 24, 163–168.CrossRefGoogle Scholar
  97. [97]
    Zhou, Y. X.; Sharma, N.; Deshmukh, P.; Lakhman, R. K.; Jain, M.; Kasi, R. M. Hierarchically structured free–standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross–linkers. J. Am. Chem. Soc. 2012, 134, 1630–1641.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA

Personalised recommendations