Nano Research

, Volume 12, Issue 1, pp 149–157 | Cite as

Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils

  • Chunyu Xie
  • Shaolong Jiang
  • Xiaolong Zou
  • Yuanwei Sun
  • Liyun Zhao
  • Min Hong
  • Shulin Chen
  • Yahuan Huan
  • Jianping Shi
  • Xiebo Zhou
  • Zhepeng Zhang
  • Pengfei Yang
  • Yuping Shi
  • Porun Liu
  • Qing Zhang
  • Peng Gao
  • Yanfeng ZhangEmail author
Research Article


Vertical heterostructures based on two-dimensional (2D) materials have attracted widespread interest for their numerous applications in electronic and optoelectronic devices. Herein, we report the direct construction of an abnormal graphene/ReSe2 stack on Au foils by a two-step chemical vapor deposition (CVD) strategy. During the second growth stage, monolayer ReSe2 is found to preferentially evolve at the interface between the first-grown graphene layer and the Au substrate. The unusual stacking behavior is unraveled by in-situ “cutting open” the upper graphene from the defects to expose the lower ReSe2 using scanning tunneling microscopy (STM). From combination of these results with density functional theory calculations, the domain boundaries and edge sites of graphene are proposed to be adsorption sites for Re and Se precursors, further facilitating the growth of ReSe2 at the van der Waals gap of graphene/Au. This work hereby offers an intriguing strategy for obtaining vertical 2D heterostructures featured with an ultra-clean interface and a designed stacking geometry.


graphene rhenium selenide chemical vapor deposition scanning tunneling microscopy two-dimensional (2D) heterostructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51472008, 51861135201, 51290272, 61774003, 51502007, and 51672007), the National Key Research and Development Program of China (Nos. 2016YFA0200103, 2017YFA0205700, and 2017YFA0304600), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Nos. KF201601 and KF201604) and “2011 Program” Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter. The authors acknowledge Electron Microscopy Laboratory in Peking University for the use of Cs corrected electron microscope. The theoretical simulations of this work were supported by the Youth 1000-Talent Program of China, the Shenzhen Basic Research Project (No. JCYJ20170407155608882), and the Development and Reform Commission of Shenzhen Municipality for the development of the “Low-Dimensional Materials and Devices” Discipline. The computations were carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1 (A).

Supplementary material

12274_2018_2194_MOESM1_ESM.pdf (3.6 mb)
Space-confined growth of monolayer ReSe2 under a graphene layer on Au foils


  1. [1]
    Offidani, M.; Milletarì, M.; Raimondi, R.; Ferreira, A. Optimal charge-tospin conversion in graphene on transition-metal dichalcogenides. Phys. Rev. Lett. 2017, 119, 196801.CrossRefGoogle Scholar
  2. [2]
    Li, W.; Ding, H.; Deng, P.; Chang, K.; Song, C. L.; He, K.; Wang, L. L.; Ma, X. C.; Hu, J. P.; Chen, X. et al. Phase separation and magnetic order in K-doped iron selenide superconductor. Nat. Phys. 2011, 8, 126–130.CrossRefGoogle Scholar
  3. [3]
    Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.CrossRefGoogle Scholar
  4. [4]
    Tang, H. L.; Chiu, M. H.; Tseng, C. C.; Yang, S. H.; Hou, K. J.; Wei, S. Y.; Huang, J. K.; Lin, Y. F.; Lien, C. H.; Li, L. J. Multilayer graphene–WSe2 heterostructures for WSe2 transistors. ACS Nano 2017, 11, 12817–12823.CrossRefGoogle Scholar
  5. [5]
    Yu, L. L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y. X.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 2014, 14, 3055–3063.CrossRefGoogle Scholar
  6. [6]
    Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.CrossRefGoogle Scholar
  7. [7]
    Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2015, 11, 42–46.CrossRefGoogle Scholar
  8. [8]
    Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.CrossRefGoogle Scholar
  9. [9]
    Wang, Q. S.; Wen, Y.; He, P.; Yin, L.; Wang, Z. X.; Wang, F.; Xu, K.; Huang, Y.; Wang, F. M.; Jiang, C. et al. High-performance phototransistor of epitaxial PbS nanoplate-graphene heterostructure with edge contact. Adv. Mater. 2016, 28, 6497–6503.CrossRefGoogle Scholar
  10. [10]
    Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.CrossRefGoogle Scholar
  11. [11]
    Haigh, S. J.; Gholinia, A.; Jalil, R.; Romani, S.; Britnell, L.; Elias, D. C.; Novoselov, K. S.; Ponomarenko, L. A.; Geim, A. K.; Gorbachev, R. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 2012, 11, 764–767.CrossRefGoogle Scholar
  12. [12]
    Yu, W. J.; Liu, Y.; Zhou, H. L.; Yin, A. X.; Li, Z.; Huang, Y.; Duan, X. F. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol. 2013, 8, 952–958.CrossRefGoogle Scholar
  13. [13]
    Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162–12174.CrossRefGoogle Scholar
  14. [14]
    Chen, Z. L.; Guan, B. L.; Chen, X. D.; Zeng, Q.; Lin, L.; Wang, R. Y.; Priydarshi, M. K.; Sun, J. Y.; Zhang, Z. P.; Wei, T. B. et al. Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Res. 2016, 9, 3048–3055.CrossRefGoogle Scholar
  15. [15]
    Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. Van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.CrossRefGoogle Scholar
  16. [16]
    Shi, J. P.; Liu, M. X.; Wen, J. X.; Ren, X. B.; Zhou, X. B.; Ji, Q. Q.; Ma, D. L.; Zhang, Y.; Jin, C. J.; Chen, H. J. et al. All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures. Adv. Mater. 2015, 27, 7086–7092.CrossRefGoogle Scholar
  17. [17]
    Zhang, Z. P.; Ji, X. J.; Shi, J. P.; Zhou, X. B.; Zhang, S.; Hou, Y.; Qi, Y.; Fang, Q. Y.; Ji, Q. Q.; Zhang, Y. et al. Direct chemical vapor deposition growth and band-gap characterization of MoS2/h-BN van der Waals heterostructures on Au foils. ACS Nano 2017, 11, 4328–4336.CrossRefGoogle Scholar
  18. [18]
    Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rümmeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063–2070.CrossRefGoogle Scholar
  19. [19]
    Li, G.; Zhou, H. T.; Pan, L. D.; Zhang, Y.; Huang, L.; Xu, W. Y.; Du, S. X.; Ouyang, M.; Ferrari, A. C.; Gao, H. J. Role of cooperative interactions in the intercalation of heteroatoms between graphene and a metal substrate. J. Am. Chem. Soc. 2015, 137, 7099–7103.CrossRefGoogle Scholar
  20. [20]
    Yan, A. M.; Velasco, J. Jr.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Wang, F.; Crommie, M. F.; Zettl, A. Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 2015, 15, 6324–6331.CrossRefGoogle Scholar
  21. [21]
    Yu, H.; Yang, Z. Z.; Du, L. J.; Zhang, J.; Shi, J. A.; Chen, W.; Chen, P.; Liao, M. Z.; Zhao, J.; Meng, J. L. et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005.CrossRefGoogle Scholar
  22. [22]
    Li, H.; Wu, J. B.; Ran, F. R.; Lin, M. L.; Liu, X. L.; Zhao, Y. Y.; Lu, X.; Xiong, Q. H.; Zhang, J.; Huang, W. et al. Interfacial interactions in van der Waals heterostructures of MoS2 and graphene. ACS Nano 2017, 11, 11714–11723.CrossRefGoogle Scholar
  23. [23]
    Varykhalov, A.; Sánchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.CrossRefGoogle Scholar
  24. [24]
    Gierz, I.; Suzuki, T.; Weitz, R. T.; Lee, D. S.; Krauss, B.; Riedl, C.; Starke, U.; Höchst, H.; Smet, J. H.; Ast, C. R. et al. Electronic decoupling of an epitaxial graphene monolayer by gold intercalation. Phys. Rev. B 2010, 81, 235408.CrossRefGoogle Scholar
  25. [25]
    Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.CrossRefGoogle Scholar
  26. [26]
    Petrovic, M.; Šrut Rakic, I.; Runte, S.; Busse, C.; Sadowski, J. T.; Lazic, P.; Pletikosic, I.; Pan, Z. H.; Milun, M.; Pervan, P. et al. The mechanism of caesium intercalation of graphene. Nat. Commun. 2013, 4, 2772.CrossRefGoogle Scholar
  27. [27]
    Weser, M.; Voloshina, E. N.; Horn, K.; Dedkov, Y. S. Electronic structure and magnetic properties of the graphene/Fe/Ni(111) intercalation-like system. Phys. Chem. Chem. Phys. 2011, 13, 7534–7539.CrossRefGoogle Scholar
  28. [28]
    Gao, T.; Gao, Y. B.; Chang, C. Z.; Chen, Y. B.; Liu, M. X.; Xie, S. B.; He, K.; Ma, X. C.; Zhang, Y. F.; Liu, Z. F. Atomic-scale morphology and electronic structure of manganese atomic layers underneath epitaxial graphene on SiC(0001). ACS Nano 2012, 6, 6562–6568.CrossRefGoogle Scholar
  29. [29]
    Zhang, Y.; Zhang, Y. F.; Ma, D. L.; Ji, Q. Q.; Fang, W.; Shi, J. P.; Gao, T.; Liu, M. X.; Gao, Y. B.; Chen, Y. B. et al. Mn atomic layers under inert covers of graphene and hexagonal boron nitride prepared on Rh(111). Nano Res. 2013, 6, 887–896.CrossRefGoogle Scholar
  30. [30]
    Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-freestanding epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.CrossRefGoogle Scholar
  31. [31]
    Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.CrossRefGoogle Scholar
  32. [32]
    Duong, D. L.; Han, G. H.; Lee, S. M.; Gunes, F.; Kim, E. S.; Kim, S. T.; Kim, H.; Ta, Q. H.; So, K. P.; Yoon, S. J. et al. Probing graphene grain boundaries with optical microscopy. Nature 2012, 490, 235–239.CrossRefGoogle Scholar
  33. [33]
    Feng, X. F.; Maier, S.; Salmeron, M. Water splits epitaxial graphene and intercalates. J. Am. Chem. Soc. 2012, 134, 5662–5668.CrossRefGoogle Scholar
  34. [34]
    Grånäs, E.; Andersen, M.; Arman, M. A.; Gerber, T.; Hammer, B.; Schnadt, J.; Andersen, J. N.; Michely, T.; Knudsen, J. CO intercalation of graphene on Ir(111) in the millibar regime. J. Phys. Chem. C 2013, 117, 16438–16447.CrossRefGoogle Scholar
  35. [35]
    Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule–metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616–3623.CrossRefGoogle Scholar
  36. [36]
    Cui, Y.; Gao, J. F.; Jin, L.; Zhao, J. J.; Tan, D. L.; Fu, Q.; Bao, X. H. An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene. Nano Res. 2012, 5, 352–360.CrossRefGoogle Scholar
  37. [37]
    Hao, Y. F.; Wang, L.; Liu, Y. Y.; Chen, H.; Wang, X. H.; Tan, C.; Nie, S.; Suk, J. W.; Jiang, T. F.; Liang, T. F. et al. Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene. Nat. Nanotechnol. 2016, 11, 426–431.CrossRefGoogle Scholar
  38. [38]
    Zhou, S. S.; Gan, L.; Wang, D. L.; Li, H. Q.; Zhai, T. Y. Space-confined vapor deposition synthesis of two dimensional materials. Nano Res. 2018, 11, 2909–2931.CrossRefGoogle Scholar
  39. [39]
    Li, Q. Y.; Chou, H.; Zhong, J. H.; Liu, J. Y.; Dolocan, A.; Zhang, J. Y.; Zhou, Y. Y.; Ruoff, R. S.; Chen, S. S.; Cai, W. W. Growth of adlayer graphene on Cu studied by carbon isotope labeling. Nano Lett. 2013, 13, 486–490.CrossRefGoogle Scholar
  40. [40]
    Yang, Y.; Fu, Q.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Wei, W.; Bao, X. H. Creating a nanospace under an h-BN cover for adlayer growth on nickel(111). ACS Nano 2015, 9, 11589–11598.CrossRefGoogle Scholar
  41. [41]
    Al Balushi, Z. Y.; Wang, K.; Ghosh, R. K.; Vilá, R. A.; Eichfeld, S. M.; Caldwell, J. D.; Qin, X. Y.; Lin, Y. C.; DeSario, P. A.; Stone, G. et al. Two-dimensional gallium nitride realized via graphene encapsulation. Nat. Mater. 2016, 15, 1166–1171.CrossRefGoogle Scholar
  42. [42]
    Zhou, X. B.; Qi, Y.; Shi, J. P.; Niu, J. J.; Liu, M. X.; Zhang, G. H.; Li, Q. C.; Zhang, Z. P.; Hong, M.; Ji, Q. Q. et al. Modulating the electronic properties of monolayer graphene using a periodic quasi-one-dimensional potential generated by hex-reconstructed Au(001). ACS Nano 2016, 10, 7550–7557.CrossRefGoogle Scholar
  43. [43]
    Jiang, S. L.; Hong, M.; Wei, W.; Zhao, L. Y.; Zhang, N.; Zhang, Z. P.; Yang, P. F.; Gao, N.; Zhou, X. B.; Xie, C. Y. et al. Direct synthesis and in situ characterization of monolayer parallelogrammic rhenium diselenide on gold foil. Commun. Chem. 2018, 1, 17.CrossRefGoogle Scholar
  44. [44]
    Rutter, G. M.; Crain, J. N.; Guisinger, N. P.; Li, T.; First, P. N.; Stroscio, J. A. Scattering and interference in epitaxial graphene. Science 2007, 317, 219–222.CrossRefGoogle Scholar
  45. [45]
    Gong, C. H.; Zhang, Y. X.; Chen, W.; Chu, J. W.; Lei, T. Y.; Pu, J. R.; Dai, L. P.; Wu, C. Y.; Cheng, Y. H.; Zhai, T. Y. et al. Electronic and optoelectronic applications based on 2D novel anisotropic transition metal dichalcogenides. Adv. Sci. 2017, 4, 1700231.CrossRefGoogle Scholar
  46. [46]
    Hafeez, M.; Gan, L.; Saleem Bhatti, A.; Zhai, T. Y. Rhenium dichalcogenides (ReX2, X = S or Se): An emerging class of TMDs family. Mater. Chem. Front. 2017, 1, 1917–1932.CrossRefGoogle Scholar
  47. [47]
    Parkinson, B. A.; Ren, J.; Whangbo, M. H. Relationship of STM and AFM images to the local density of states in the valence and conduction bands of rhenium selenide (ReSe2). J. Am. Chem. Soc. 1991, 113, 7833–7837.CrossRefGoogle Scholar
  48. [48]
    Zhong, H. X.; Gao, S. Y.; Shi, J. J.; Yang, L. Quasiparticle band gaps, excitonic effects, and anisotropic optical properties of the monolayer distorted 1T diamond-chain structures ReS2 and ReSe2. Phys. Rev. B 2015, 92, 115438.CrossRefGoogle Scholar
  49. [49]
    Kelty, S. P.; Ruppert, A. F.; Chianelli, R. R.; Ren, J.; Whangbo, M. H. Scanning probe microscopy study of layered dichalcogenide ReS2. J. Am. Chem. Soc. 1994, 116, 7857–7863.CrossRefGoogle Scholar
  50. [50]
    Zhang, E. Z.; Wang, P.; Li, Z.; Wang, H. F.; Song, C. Y.; Huang, C.; Chen, Z. G.; Yang, L.; Zhang, K. K.; Lu, S. H. et al. Tunable ambipolar polarizationsensitive photodetectors based on high-anisotropy ReSe2 nanosheets. ACS Nano 2016, 10, 8067–8077.CrossRefGoogle Scholar
  51. [51]
    Hafeez, M.; Gan, L.; Li, H. Q.; Ma, Y.; Zhai, T. Y. Chemical vapor deposition synthesis of ultrathin hexagonal ReSe2 flakes for anisotropic Raman property and optoelectronic application. Adv. Mater. 2016, 28, 8296–8301.CrossRefGoogle Scholar
  52. [52]
    Cui, F. F.; Feng, Q. L.; Hong, J. H.; Wang, R. Y.; Bai, Y.; Li, X. B.; Liu, D. Y.; Zhou, Y.; Liang, X.; He, X. X. et al. Synthesis of large-size 1T’ ReS2xSe2(1-x) alloy monolayer with tunable bandgap and carrier type. Adv. Mater. 2017, 29, 1705015.CrossRefGoogle Scholar
  53. [53]
    Shi, J. P.; Tong, R.; Zhou, X. B.; Gong, Y.; Zhang, Z. P.; Ji, Q. Q.; Zhang, Y.; Fang, Q.; Gu, L. Y.; Wang, X. N. et al. Temperature-mediated selective growth of MoS2/WS2 and WS2/MoS2 vertical stacks on Au foils for direct photocatalytic applications. Adv. Mater. 2016, 28, 10664–10672.CrossRefGoogle Scholar
  54. [54]
    Gao, T.; Song, X. J.; Du, H. W.; Nie, Y. F.; Chen, Y. B.; Ji, Q. Q.; Sun, J. Y.; Yang, Y. L.; Zhang, Y. F.; Liu, Z. F. Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6, 6835.CrossRefGoogle Scholar
  55. [55]
    Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under twodimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.CrossRefGoogle Scholar
  56. [56]
    Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.CrossRefGoogle Scholar
  57. [57]
    Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metalcatalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023–17028.CrossRefGoogle Scholar
  58. [58]
    Lyo, I. W.; Avouris, P. Field-induced nanometer- to atomic-scale manipulation of silicon surfaces with the STM. Science 1991, 253, 173–176.CrossRefGoogle Scholar
  59. [59]
    Eigler, D. M.; Lutz, C. P.; Rudge, W. E. An atomic switch realized with the scanning tunnelling microscope. Nature 1991, 352, 600–603.CrossRefGoogle Scholar
  60. [60]
    Rubio-Verdú, C.; Sáenz-Arce, G.; Martinez-Asencio, J.; Milan, D. C.; Moaied, M.; Palacios, J. J.; Caturla, M. J.; Untiedt, C. Graphene flakes obtained by local electro-exfoliation of graphite with a STM tip. Phys. Chem. Chem. Phys. 2017, 19, 8061–8068.CrossRefGoogle Scholar
  61. [61]
    Rutter, G. M.; Guisinger, N. P.; Crain, J. N.; Jarvis, E. A. A.; Stiles, M. D.; Li, T.; First, P. N.; Stroscio, J. A. Imaging the interface of epitaxial graphene with silicon carbide via scanning tunneling microscopy. Phys. Rev. B 2007, 76, 235416.CrossRefGoogle Scholar
  62. [62]
    He, K. T.; Koepke, J. C.; Barraza-Lopez, S.; Lyding, J. W. Separationdependent electronic transparency of monolayer graphene membranes on III-V semiconductor substrates. Nano Lett. 2010, 10, 3446–3452.CrossRefGoogle Scholar
  63. [63]
    Xu, Y.; He, K. T.; Schmucker, S. W.; Guo, Z.; Koepke, J. C.; Wood, J. D.; Lyding, J. W.; Aluru, N. R. Inducing electronic changes in graphene through silicon (100) substrate modification. Nano Lett. 2011, 11, 2735–2742.CrossRefGoogle Scholar
  64. [64]
    Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655–16660.CrossRefGoogle Scholar
  65. [65]
    Emtsev, K. V.; Zakharov, A. A.; Coletti, C.; Forti, S.; Starke U. Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Phys. Rev. B 2011, 84, 125423.CrossRefGoogle Scholar
  66. [66]
    Rut’kov, E. V.; Gall’, N. R. Role of edge atoms of graphene islands on metals in nucleation, growth, alkali metal intercalation. Phys. Solid State 2009, 51, 1738–1743.CrossRefGoogle Scholar
  67. [67]
    Mu, R. T.; Fu, Q.; Jin, L.; Yu, L.; Fang, G. Z.; Tan, D. L.; Bao, X. H. Visualizing chemical reactions confined under graphene. Angew. Chem., Int. Ed. 2012, 51, 4856–4859.CrossRefGoogle Scholar
  68. [68]
    Shi, J. P.; Zhou, X. B.; Han, G. F.; Liu, M. X.; Ma, D. L.; Sun, J. Y.; Li, C.; Ji, Q. Q.; Zhang, Y.; Song, X. J. et al. Narrow-gap quantum wires arising from the edges of monolayer MoS2 synthesized on graphene. Adv. Mater. Interfaces 2016, 3, 1600332.CrossRefGoogle Scholar
  69. [69]
    Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169.CrossRefGoogle Scholar
  70. [70]
    Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.CrossRefGoogle Scholar
  71. [71]
    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953.CrossRefGoogle Scholar
  72. [72]
    Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.CrossRefGoogle Scholar
  73. [73]
    Tkatchenko, A.; Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 2009, 102, 073005.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chunyu Xie
    • 1
    • 2
  • Shaolong Jiang
    • 1
    • 2
  • Xiaolong Zou
    • 3
  • Yuanwei Sun
    • 4
    • 5
  • Liyun Zhao
    • 1
  • Min Hong
    • 1
    • 2
  • Shulin Chen
    • 4
    • 6
  • Yahuan Huan
    • 1
    • 2
  • Jianping Shi
    • 1
    • 2
  • Xiebo Zhou
    • 1
    • 2
  • Zhepeng Zhang
    • 1
    • 2
  • Pengfei Yang
    • 1
    • 2
  • Yuping Shi
    • 1
    • 2
  • Porun Liu
    • 7
  • Qing Zhang
    • 1
  • Peng Gao
    • 4
    • 5
    • 8
  • Yanfeng Zhang
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  2. 2.Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  3. 3.Tsinghua-Berkeley Shenzhen Institute (TBSI)Tsinghua UniversityShenzhenChina
  4. 4.Electron Microscopy Laboratory, School of PhysicsPeking UniversityBeijingChina
  5. 5.International Center for Quantum Materials, School of PhysicsPeking UniversityBeijingChina
  6. 6.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  7. 7.Centre for Clean Environment and EnergyGriffith UniversityGold CoastAustralia
  8. 8.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations