Advertisement

Precise control of graphene etching by remote hydrogen plasma

  • Bangjun Ma
  • Shizhao Ren
  • Peiqi Wang
  • Chuancheng Jia
  • Xuefeng Guo
Research Article
  • 66 Downloads

Abstract

Graphene with atomically smooth and configuration-specific edges plays the key role in the performance of graphene-based electronic devices. Remote hydrogen plasma etching of graphene has been proven to be an effective way to create smooth edges with a specific zigzag configuration. However, the etching process is still poorly understood. In this study, with the aid of a custom-made plasma-enhanced hydrogen etching (PEHE) system, a detailed graphene etching process by remote hydrogen plasma is presented. Specifically, we find that hydrogen plasma etching of graphene shows strong thickness and temperature dependence. The etching process of single-layer graphene is isotropic. This is opposite to the anisotropic etching effect observed for bilayer and thicker graphene with an obvious dependence on temperature. On the basis of these observations, a geometrical model was built to illustrate the configuration evolution of graphene edges during etching, which reveals the origin of the anisotropic etching effect. By further utilizing this model, armchair graphene edges were also prepared in a controlled manner for the first time. These investigations offer a better understanding of the etching process for graphene, which should facilitate the fabrication of graphene-based electronic devices with controlled edges and the exploration of more interesting properties of graphene.

Keywords

graphene hydrogen plasma anisotropic etching electronic device 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Financial support from the National Key R&D Program of China (No. 2017YFA0204901) and the National Natural Science Foundation of China (Nos. 21373014 and 21727806) is gratefully acknowledged.

Supplementary material

12274_2018_2192_MOESM1_ESM.pdf (1.9 mb)
Electronic Supplementary Material

References

  1. [1]
    Colombo, L.; Wallace, R. M.; Ruoff, R. S. Graphene growth and device integration. Proc. IEEE 2013, 101, 1536–1556.CrossRefGoogle Scholar
  2. [2]
    Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 2011, 83, 407–470.CrossRefGoogle Scholar
  3. [3]
    Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.CrossRefGoogle Scholar
  4. [4]
    Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.CrossRefGoogle Scholar
  5. [5]
    Liao, L.; Duan, X. F. Graphene for radio frequency electronics. Mater. Today 2012, 15, 328–338.CrossRefGoogle Scholar
  6. [6]
    Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.CrossRefGoogle Scholar
  7. [7]
    Bai, J. W.; Cheng, R.; Xiu, F. X.; Liao, L.; Wang, M. S.; Shailos, A.; Wang, K. L.; Huang, Y.; Duan, X. F. Very large magnetoresistance in graphene nanoribbons. Nat. Nanotechnol. 2010, 5, 655–659.CrossRefGoogle Scholar
  8. [8]
    Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science 2009, 323, 1705–1708.CrossRefGoogle Scholar
  9. [9]
    Krauss, B.; Nemes-Incze, P.; Skakalova, V.; Biro, L. P.; von Klitzing, K.; Smet, J. H. Raman scattering at pure graphene zigzag edges. Nano Lett. 2010, 10, 4544–4548.CrossRefGoogle Scholar
  10. [10]
    Liu, Y. Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.CrossRefGoogle Scholar
  11. [11]
    Suenaga, K.; Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature 2010, 468, 1088–1090.CrossRefGoogle Scholar
  12. [12]
    Tao, C. G.; Jiao, L. Y.; Yazyev, O. V.; Chen, Y. C.; Feng, J. J; Zhang, X. W.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys. 2011, 7, 616–620.CrossRefGoogle Scholar
  13. [13]
    Ziatdinov, M.; Fujii, S.; Kusakabe, K.; Kiguchi, M.; Mori, T.; Enoki, T. Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Phys. Rev. B 2013, 87, 115427.CrossRefGoogle Scholar
  14. [14]
    Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880.CrossRefGoogle Scholar
  15. [15]
    Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.CrossRefGoogle Scholar
  16. [16]
    Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 2016, 531, 489–492.CrossRefGoogle Scholar
  17. [17]
    Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.CrossRefGoogle Scholar
  18. [18]
    Yu, W. J.; Duan, X. F. Tunable transport gap in narrow bilayer graphene nanoribbons. Sci. Rep. 2013, 3, 1248.CrossRefGoogle Scholar
  19. [19]
    Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 2014, 514, 608–611.CrossRefGoogle Scholar
  20. [20]
    Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473.CrossRefGoogle Scholar
  21. [21]
    Dobrik, G.; Tapasztó, L.; Biró, L. P. Selective etching of armchair edges in graphite. Carbon 2013, 56, 332–338.CrossRefGoogle Scholar
  22. [22]
    Luo, D.; Yang, F.; Wang, X.; Sun, H.; Gao, D. L.; Li, R. M.; Yang, J.; Li, Y. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene. Small 2014, 10, 2809–2814.CrossRefGoogle Scholar
  23. [23]
    Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.CrossRefGoogle Scholar
  24. [24]
    Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographically selective nanopatterning of graphene on SiO2. Nano Res. 2010, 3, 110–116.CrossRefGoogle Scholar
  25. [25]
    Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.CrossRefGoogle Scholar
  26. [26]
    Qi, M.; Ren, Z. Y.; Jiao, Y.; Zhou, Y. X.; Xu, X. L.; Li, W. L.; Li, J. Y.; Zheng, X. L.; Bai, J. T. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J. Phys. Chem. C 2013, 117, 14348–14353.CrossRefGoogle Scholar
  27. [27]
    Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 2011, 5, 6069–6076.CrossRefGoogle Scholar
  28. [28]
    Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc. 2014, 136, 3040–3047.CrossRefGoogle Scholar
  29. [29]
    Zhang, Y.; Li, Z.; Kim, P.; Zhang, L.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.CrossRefGoogle Scholar
  30. [30]
    Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of singlecrystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.CrossRefGoogle Scholar
  31. [31]
    Zhang, H. R.; Zhang, Y. H.; Zhang, Y. Q.; Chen, Z. Y.; Sui, Y. P.; Ge, X. M.; Yu, G. H.; Jin, Z.; Liu, X. Y. Edge morphology evolution of graphene domains during chemical vapor deposition cooling revealed through hydrogen etching. Nanoscale 2016, 8, 4145–4150.CrossRefGoogle Scholar
  32. [32]
    Geng, D. C.; Wu, B.; Guo, Y. L.; Luo, B. R.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Fractal etching of graphene. J. Am. Chem. Soc. 2013, 135, 6431–6434.CrossRefGoogle Scholar
  33. [33]
    Knox, K. R.; Wang, S. C.; Morgante, A.; Cvetko, D.; Locatelli, A.; Mentes, T. O.; Niño, M. A.; Kim, P.; Osgood, R. M. Jr. Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate. Phys. Rev. B 2008, 78, 201408(R).Google Scholar
  34. [34]
    Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater. 2010, 22, 4014–4019.CrossRefGoogle Scholar
  35. [35]
    Guo, Y. F.; Guo, W. L. Favorable zigzag configuration at etched graphene edges. J. Phys. Chem. C 2011, 115, 20546–20549.CrossRefGoogle Scholar
  36. [36]
    Zhang, X. W.; Yazyev, O. V.; Feng, J. J.; Xie, L. M.; Tao, C. G.; Chen, Y. C.; Jiao, L. Y.; Pedramrazi, Z.; Zettl, A.; Louie, S. G. et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano 2013, 7, 198–202.CrossRefGoogle Scholar
  37. [37]
    Ma, B. J.; Wang, P. Q.; Ren, S. Z.; Jia, C. C.; Guo, X. F. Versatile optical determination of two-dimensional atomic crystal layers. Carbon 2016, 109, 384–389.CrossRefGoogle Scholar
  38. [38]
    Xie, L. M.; Jiao, L. Y.; Dai, H. J. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc. 2010, 132, 14751–14753.CrossRefGoogle Scholar
  39. [39]
    Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater. 2011, 23, 3061–3065.CrossRefGoogle Scholar
  40. [40]
    Diankov, G.; Neumann, M.; Goldhaber-Gordon, D. Extreme monolayerselectivity of hydrogen-plasma reactions with graphene. ACS Nano 2013, 7, 1324–1332.CrossRefGoogle Scholar
  41. [41]
    Wang, G. L.; Wu, S.; Zhang, T. T.; Chen, P.; Lu, X. B.; Wang, S. P.; Wang, D. M.; Watanabe, K.; Taniguchi, T.; Shi, D. X. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett. 2016, 109, 053101.CrossRefGoogle Scholar
  42. [42]
    Pan, Z. J.; Yang, R. T. The mechanism of methane formation from the reaction between graphite and hydrogen. J. Catal. 1990, 123, 206–214.CrossRefGoogle Scholar
  43. [43]
    Davydova, A.; Despiau-Pujo, E.; Cunge, G.; Graves, D. B. Etching mechanisms of graphene nanoribbons in downstream H2 plasmas: Insights from molecular dynamics simulations. J. Phys. D: Appl. Phys. 2015, 48, 195202.CrossRefGoogle Scholar
  44. [44]
    Harpale, A.; Panesi, M.; Chew, H. B. Plasma-graphene interaction and its effects on nanoscale patterning. Phys. Rev. B 2016, 93, 035416.CrossRefGoogle Scholar
  45. [45]
    Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291–306.CrossRefGoogle Scholar
  46. [46]
    Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.CrossRefGoogle Scholar
  47. [47]
    Wu, S.; Liu, B.; Shen, C.; Li, S.; Huang, X. C.; Lu, X. B.; Chen, P.; Wang, G. L.; Wang, D. M.; Liao, M. Z. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett. 2018, 120, 216601.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bangjun Ma
    • 1
  • Shizhao Ren
    • 1
  • Peiqi Wang
    • 1
  • Chuancheng Jia
    • 1
  • Xuefeng Guo
    • 1
    • 2
  1. 1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.Department of Materials Science and EngineeringPeking UniversityBeijingChina

Personalised recommendations