Graphene with atomically smooth and configuration-specific edges plays the key role in the performance of graphene-based electronic devices. Remote hydrogen plasma etching of graphene has been proven to be an effective way to create smooth edges with a specific zigzag configuration. However, the etching process is still poorly understood. In this study, with the aid of a custom-made plasma-enhanced hydrogen etching (PEHE) system, a detailed graphene etching process by remote hydrogen plasma is presented. Specifically, we find that hydrogen plasma etching of graphene shows strong thickness and temperature dependence. The etching process of single-layer graphene is isotropic. This is opposite to the anisotropic etching effect observed for bilayer and thicker graphene with an obvious dependence on temperature. On the basis of these observations, a geometrical model was built to illustrate the configuration evolution of graphene edges during etching, which reveals the origin of the anisotropic etching effect. By further utilizing this model, armchair graphene edges were also prepared in a controlled manner for the first time. These investigations offer a better understanding of the etching process for graphene, which should facilitate the fabrication of graphene-based electronic devices with controlled edges and the exploration of more interesting properties of graphene.
Financial support from the National Key R&D Program of China (No. 2017YFA0204901) and the National Natural Science Foundation of China (Nos. 21373014 and 21727806) is gratefully acknowledged.
Colombo, L.; Wallace, R. M.; Ruoff, R. S. Graphene growth and device integration. Proc. IEEE2013, 101, 1536–1556.CrossRefGoogle Scholar
[2]
Das Sarma, S.; Adam, S.; Hwang, E. H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys.2011, 83, 407–470.CrossRefGoogle Scholar
[3]
Han, M. Y.; Özyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett.2007, 98, 206805.CrossRefGoogle Scholar
[4]
Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature2011, 479, 338–344.CrossRefGoogle Scholar
[5]
Liao, L.; Duan, X. F. Graphene for radio frequency electronics. Mater. Today2012, 15, 328–338.CrossRefGoogle Scholar
[6]
Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature2012, 490, 192–200.CrossRefGoogle Scholar
[7]
Bai, J. W.; Cheng, R.; Xiu, F. X.; Liao, L.; Wang, M. S.; Shailos, A.; Wang, K. L.; Huang, Y.; Duan, X. F. Very large magnetoresistance in graphene nanoribbons. Nat. Nanotechnol.2010, 5, 655–659.CrossRefGoogle Scholar
[8]
Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C. H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G. et al. Graphene at the edge: Stability and dynamics. Science2009, 323, 1705–1708.CrossRefGoogle Scholar
[9]
Krauss, B.; Nemes-Incze, P.; Skakalova, V.; Biro, L. P.; von Klitzing, K.; Smet, J. H. Raman scattering at pure graphene zigzag edges. Nano Lett.2010, 10, 4544–4548.CrossRefGoogle Scholar
[10]
Liu, Y. Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett.2010, 105, 235502.CrossRefGoogle Scholar
[11]
Suenaga, K.; Koshino, M. Atom-by-atom spectroscopy at graphene edge. Nature2010, 468, 1088–1090.CrossRefGoogle Scholar
[12]
Tao, C. G.; Jiao, L. Y.; Yazyev, O. V.; Chen, Y. C.; Feng, J. J; Zhang, X. W.; Capaz, R. B.; Tour, J. M.; Zettl, A.; Louie, S. G. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nat. Phys.2011, 7, 616–620.CrossRefGoogle Scholar
[13]
Ziatdinov, M.; Fujii, S.; Kusakabe, K.; Kiguchi, M.; Mori, T.; Enoki, T. Visualization of electronic states on atomically smooth graphitic edges with different types of hydrogen termination. Phys. Rev. B2013, 87, 115427.CrossRefGoogle Scholar
[14]
Jiao, L. Y.; Zhang, L.; Wang, X. R.; Diankov, G.; Dai, H. J. Narrow graphene nanoribbons from carbon nanotubes. Nature2009, 458, 877–880.CrossRefGoogle Scholar
Ruffieux, P.; Wang, S. Y.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature2016, 531, 489–492.CrossRefGoogle Scholar
[17]
Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett.2008, 100, 206803.CrossRefGoogle Scholar
[18]
Yu, W. J.; Duan, X. F. Tunable transport gap in narrow bilayer graphene nanoribbons. Sci. Rep.2013, 3, 1248.CrossRefGoogle Scholar
[19]
Magda, G. Z.; Jin, X. Z.; Hagymási, I.; Vancsó, P.; Osváth, Z.; Nemes-Incze, P.; Hwang, C.; Biró, L. P.; Tapasztó, L. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature2014, 514, 608–611.CrossRefGoogle Scholar
[20]
Cai, J.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A. P.; Saleh, M.; Feng, X.; Mullen, K.; Fasel, R. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature2010, 466, 470–473.CrossRefGoogle Scholar
[21]
Dobrik, G.; Tapasztó, L.; Biró, L. P. Selective etching of armchair edges in graphite. Carbon2013, 56, 332–338.CrossRefGoogle Scholar
[22]
Luo, D.; Yang, F.; Wang, X.; Sun, H.; Gao, D. L.; Li, R. M.; Yang, J.; Li, Y. Anisotropic etching of graphite flakes with water vapor to produce armchair-edged graphene. Small2014, 10, 2809–2814.CrossRefGoogle Scholar
[23]
Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett.2009, 9, 2600–2604.CrossRefGoogle Scholar
[24]
Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographically selective nanopatterning of graphene on SiO2. Nano Res.2010, 3, 110–116.CrossRefGoogle Scholar
[25]
Ci, L. J.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res.2008, 1, 116–122.CrossRefGoogle Scholar
[26]
Qi, M.; Ren, Z. Y.; Jiao, Y.; Zhou, Y. X.; Xu, X. L.; Li, W. L.; Li, J. Y.; Zheng, X. L.; Bai, J. T. Hydrogen kinetics on scalable graphene growth by atmospheric pressure chemical vapor deposition with acetylene. J. Phys. Chem. C2013, 117, 14348–14353.CrossRefGoogle Scholar
[27]
Vlassiouk, I.; Regmi, M.; Fulvio, P.; Dai, S.; Datskos, P.; Eres, G.; Smirnov, S. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano2011, 5, 6069–6076.CrossRefGoogle Scholar
[28]
Zhang, X. Y.; Wang, L.; Xin, J.; Yakobson, B. I.; Ding, F. Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J. Am. Chem. Soc.2014, 136, 3040–3047.CrossRefGoogle Scholar
[29]
Zhang, Y.; Li, Z.; Kim, P.; Zhang, L.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano2012, 6, 126–132.CrossRefGoogle Scholar
[30]
Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of singlecrystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA2013, 110, 20386–20391.CrossRefGoogle Scholar
[31]
Zhang, H. R.; Zhang, Y. H.; Zhang, Y. Q.; Chen, Z. Y.; Sui, Y. P.; Ge, X. M.; Yu, G. H.; Jin, Z.; Liu, X. Y. Edge morphology evolution of graphene domains during chemical vapor deposition cooling revealed through hydrogen etching. Nanoscale2016, 8, 4145–4150.CrossRefGoogle Scholar
[32]
Geng, D. C.; Wu, B.; Guo, Y. L.; Luo, B. R.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Fractal etching of graphene. J. Am. Chem. Soc.2013, 135, 6431–6434.CrossRefGoogle Scholar
[33]
Knox, K. R.; Wang, S. C.; Morgante, A.; Cvetko, D.; Locatelli, A.; Mentes, T. O.; Niño, M. A.; Kim, P.; Osgood, R. M. Jr. Spectromicroscopy of single and multilayer graphene supported by a weakly interacting substrate. Phys. Rev. B2008, 78, 201408(R).Google Scholar
[34]
Yang, R.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Shi, D. X.; Gao, H. J.; Wang, E. G.; Zhang, G. Y. An anisotropic etching effect in the graphene basal plane. Adv. Mater.2010, 22, 4014–4019.CrossRefGoogle Scholar
[35]
Guo, Y. F.; Guo, W. L. Favorable zigzag configuration at etched graphene edges. J. Phys. Chem. C2011, 115, 20546–20549.CrossRefGoogle Scholar
[36]
Zhang, X. W.; Yazyev, O. V.; Feng, J. J.; Xie, L. M.; Tao, C. G.; Chen, Y. C.; Jiao, L. Y.; Pedramrazi, Z.; Zettl, A.; Louie, S. G. et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano2013, 7, 198–202.CrossRefGoogle Scholar
[37]
Ma, B. J.; Wang, P. Q.; Ren, S. Z.; Jia, C. C.; Guo, X. F. Versatile optical determination of two-dimensional atomic crystal layers. Carbon2016, 109, 384–389.CrossRefGoogle Scholar
[38]
Xie, L. M.; Jiao, L. Y.; Dai, H. J. Selective etching of graphene edges by hydrogen plasma. J. Am. Chem. Soc.2010, 132, 14751–14753.CrossRefGoogle Scholar
[39]
Shi, Z. W.; Yang, R.; Zhang, L. C.; Wang, Y.; Liu, D. H.; Shi, D. X.; Wang, E. G.; Zhang, G. Y. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater.2011, 23, 3061–3065.CrossRefGoogle Scholar
[40]
Diankov, G.; Neumann, M.; Goldhaber-Gordon, D. Extreme monolayerselectivity of hydrogen-plasma reactions with graphene. ACS Nano2013, 7, 1324–1332.CrossRefGoogle Scholar
[41]
Wang, G. L.; Wu, S.; Zhang, T. T.; Chen, P.; Lu, X. B.; Wang, S. P.; Wang, D. M.; Watanabe, K.; Taniguchi, T.; Shi, D. X. et al. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching. Appl. Phys. Lett.2016, 109, 053101.CrossRefGoogle Scholar
[42]
Pan, Z. J.; Yang, R. T. The mechanism of methane formation from the reaction between graphite and hydrogen. J. Catal.1990, 123, 206–214.CrossRefGoogle Scholar
[43]
Davydova, A.; Despiau-Pujo, E.; Cunge, G.; Graves, D. B. Etching mechanisms of graphene nanoribbons in downstream H2 plasmas: Insights from molecular dynamics simulations. J. Phys. D: Appl. Phys.2015, 48, 195202.CrossRefGoogle Scholar
[44]
Harpale, A.; Panesi, M.; Chew, H. B. Plasma-graphene interaction and its effects on nanoscale patterning. Phys. Rev. B2016, 93, 035416.CrossRefGoogle Scholar
[45]
Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol.2005, 40, 291–306.CrossRefGoogle Scholar
[46]
Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA2012, 109, 15136–15140.CrossRefGoogle Scholar
[47]
Wu, S.; Liu, B.; Shen, C.; Li, S.; Huang, X. C.; Lu, X. B.; Chen, P.; Wang, G. L.; Wang, D. M.; Liao, M. Z. et al. Magnetotransport properties of graphene nanoribbons with zigzag edges. Phys. Rev. Lett.2018, 120, 216601.CrossRefGoogle Scholar
1.Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
2.Department of Materials Science and EngineeringPeking UniversityBeijingChina