Nano Research

, Volume 11, Issue 10, pp 5107–5129 | Cite as

Plenty more room on the glass bottom: Surface functionalization and nanobiotechnology for cell isolation

  • Ali AnsariEmail author
  • P. I. ImoukhuedeEmail author
Review Article


Surface functionalization is a widely adopted technique for surface modification which allows researchers to customize surfaces to integrate with their research. Surface functionalization has been used recently to adapt surfaces to integrate with biological materials specifically to isolate cells or mimic biological tissues through cell patterning. Cell isolation and cell patterning both can be integrated with extant techniques or surfaces to customize the research to whatever needs to be tested. Substrates such as metals, biologically mimicking surfaces, environmental responsive surfaces, and even three-dimensional surfaces such as hydrogels have all been adapted to allow for functionalization for both patterning and isolation. In this review we have described both the advantages and disadvantages of these techniques and the related chemistries to better understand these tools and how best to apply them in the hope that we can further expand upon the research in the field.


surface functionalization cell isolation cell patterning self-assembled monolayers hydrogels surface modification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to thank the National Science Foundation CBET (No. 1512598), the NSF CAREER Award CBET (No. 1653925) and the American Heart Association (No. 16SDG26940002) for funding support. Finally, we would also like to thank Stacie Chen and Spencer Mamer for stimulating conversation and advice about the paper.


  1. [1]
    Feynman, R. P. Plenty of room at the bottom. Am. Phys. Soc. 1959, 16, 1–11.Google Scholar
  2. [2]
    Von Der Mark, K.; Park, J.; Bauer, S.; Schmuki, P. Nanoscale engineering of biomimetic surfaces: Cues from the extracellular matrix. Cell Tissue Res. 2010, 339, 131–153.CrossRefGoogle Scholar
  3. [3]
    Camci–Unal, G.; Nichol, J. W.; Bae, H.; Tekin, H.; Bischoff, J.; Khademhosseini, A. Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J. Tissue Eng. Regen. Med. 2013, 7, 337–347.CrossRefGoogle Scholar
  4. [4]
    Song, Y. L.; Tian, T.; Shi, Y. Z.; Liu, W. L.; Zou, Y.; Khajvand, T.; Wang, S. L.; Zhu, Z.; Yang, C. Y. Enrichment and single–cell analysis of circulating tumor cells. Chem. Sci. 2017, 8, 1736–1751.CrossRefGoogle Scholar
  5. [5]
    Iwata, Y.; Matsushita, T.; Horikawa, M.; DiLillo, D. J.; Yanaba, K.; Venturi, G. M.; Szabolcs, P. M.; Bernstein, S. H.; Magro, C. M.; Williams, A. D. et al. Characterization of a rare IL–10–competent B–cell subset in humans that parallels mouse regulatory B10 cells. Blood 2011, 117, 530–541.CrossRefGoogle Scholar
  6. [6]
    Rayment, E. A.; Williams, D. J. Concise review: Mind the gap: Challenges in characterizing and quantifying cell–and tissue–based therapies for clinical translation. Stem Cells 2010, 28, 996–1004.Google Scholar
  7. [7]
    Lukes, R. J.; Collins, R. D. Immunologic characterization of human malignant lymphomas. Cancer 1974, 34, 1488–1503.CrossRefGoogle Scholar
  8. [8]
    Bertolini, F.; Shaked, Y.; Mancuso, P.; Kerbel, R. S. The multifaceted circulating endothelial cell in cancer: Towards marker and target identification. Nat. Rev. Cancer 2006, 6, 835–845.CrossRefGoogle Scholar
  9. [9]
    Young, H. E.; Steele, T. A.; Bray, R. A.; Detmer, K.; Blake, L. W.; Lucas, P. W.; Black, A. C. Human pluripotent and progenitor cells display cell surface cluster differentiation markers CD10, CD13, CD56, and MHC Class–I. Exp. Biol. Med. 1999, 221, 63–72.CrossRefGoogle Scholar
  10. [10]
    Human and Mouse CD Marker Handbook; BD Biosciences: San Jose, CA, USA, 2010.Google Scholar
  11. [11]
    Hochreiter–Hufford, A. E.; Lee, C. S.; Kinchen, J. M.; Sokolowski, J. D.; Arandjelovic, S.; Call, J. A.; Klibanov, A. L.; Yan, Z.; Mandell, J. W.; Ravichandran, K. S. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion. Nature 2013, 497, 263–267.CrossRefGoogle Scholar
  12. [12]
    Alunni–Fabbroni, M.; Sandri, M. T. Circulating tumour cells in clinical practice: Methods of detection and possible characterization. Methods 2010, 50, 289–297.CrossRefGoogle Scholar
  13. [13]
    Hoshino, K.; Huang, Y. Y.; Lane, N.; Huebschman, M.; Uhr, J. W.; Frenkel, E. P.; Zhang, X. J. Microchip–based immunomagnetic detection of circulating tumor cells. Lab Chip 2011, 11, 3449–3457.CrossRefGoogle Scholar
  14. [14]
    Stachelek, S. J.; Finley, M. J.; Alferiev, I. S.; Wang, F. X.; Tsai, R. K.; Eckells, E. C.; Tomczyk, N.; Connolly, J. M.; Discher, D. E.; Eckmann, D. M. et al. The effect of CD47 modified polymer surfaces on inflammatory cell attachment and activation. Biomaterials 2011, 32, 4317–4326.CrossRefGoogle Scholar
  15. [15]
    Watkins, N. N.; Hassan, U.; Damhorst, G.; Ni, H. K.; Vaid, A.; Rodriguez, W.; Bashir, R. Microfluidic CD4+ and CD8+ T lymphocyte counters for point–of–care HIV diagnostics using whole blood. Sci. Transl. Med. 2013, 5, 214ra170.CrossRefGoogle Scholar
  16. [16]
    Hassan, U.; Ghonge, T.; Reddy, B. Jr.; Patel, M.; Rappleye, M.; Taneja, I.; Tanna, A.; Healey, R.; Manusry, N.; Price, Z. et al. A point–of–care microfluidic biochip for quantification of CD64 expression from whole blood for sepsis stratification. Nat. Commun. 2017, 8, 15949.CrossRefGoogle Scholar
  17. [17]
    Lin, Q. K.; Ding, X.; Qiu, F. Y.; Song, X. X.; Fu, G. S.; Ji, J. In situ endothelialization of intravascular stents coated with an anti–CD34 antibody functionalized heparin–collagen multilayer. Biomaterials 2010, 31, 4017–4025.CrossRefGoogle Scholar
  18. [18]
    Ye, X. F.; Zhao, Q.; Sun, X. N.; Li, H. Q. Enhancement of mesenchymal stem cell attachment to decellularized porcine aortic valve scaffold by in vitro coating with antibody against CD90: A preliminary study on antibody–modified tissueengineered heart valve. Tissue Eng. Part A 2009, 15, 1–11.CrossRefGoogle Scholar
  19. [19]
    Imoukhuede, P. I.; Dokun, A. O.; Annex, B. H.; Popel, A. S. Endothelial cell–by–cell profiling reveals the temporal dynamics of VEGFR1 and VEGFR2 membrane localization after murine hindlimb ischemia. Am. J. Physiol. Heart Circ. Physiol. 2013, 304, H1085–H1093.CrossRefGoogle Scholar
  20. [20]
    Lee–Montiel, F. T.; Li, P.; Imoukhuede, P. I. Quantum dot multiplexing for the profiling of cellular receptors. Nanoscale 2015, 7, 18504–18514.CrossRefGoogle Scholar
  21. [21]
    Komohara, Y.; Jinushi, M.; Takeya, M. Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci. 2014, 105, 1–8.CrossRefGoogle Scholar
  22. [22]
    Mittal, S.; Wong, I. Y.; Yanik, A. A.; Deen, W. M.; Toner, M. Discontinuous nanoporous membranes reduce non–specific fouling for immunoaffinity cell capture. Small 2013, 9, 4207–4214.CrossRefGoogle Scholar
  23. [23]
    Imoukhuede, P. I.; Popel, A. S. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 2014, 3, 225–244.CrossRefGoogle Scholar
  24. [24]
    Bashir, R.; Gomez, R.; Sarikaya, A.; Ladisch, M. R.; Sturgis, J.; Robinson, J. P. Adsorption of avidin on microfabricated surfaces for protein biochip applications. Biotechnol. Bioeng. 2001, 73, 324–328.CrossRefGoogle Scholar
  25. [25]
    Millet, L. J.; Stewart, M. E.; Nuzzo, R. G.; Gillette, M. U. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices. Lab Chip. 2010, 10, 1525–1535..CrossRefGoogle Scholar
  26. [26]
    Coad, B. R.; Vasilev, K.; Diener, K. R.; Hayball, J. D.; Short, R. D.; Griesser, H. J. Immobilized streptavidin gradients as bioconjugation platforms. Langmuir 2012, 28, 2710–2717.CrossRefGoogle Scholar
  27. [27]
    Lee–Montiel, F. T.; Imoukhuede, P. I. Engineering quantum dot calibration standards for quantitative fluorescent profiling. J. Mater. Chem. B 2013, 1, 6434–6441.CrossRefGoogle Scholar
  28. [28]
    Williams, E. H.; Davydov, A. V.; Motayed, A.; Sundaresan, S. G.; Bocchini, P.; Richter, L. J.; Stan, G.; Steffens, K.; Zangmeister, R.; Schreifels, J. A. et al. Immobilization of streptavidin on 4H–SiC for biosensor development. Appl. Surf. Sci. 2012, 258, 6056–6063.CrossRefGoogle Scholar
  29. [29]
    Uchida, K.; Otsuka, H.; Kaneko, M.; Kataoka, K.; Nagasaki, Y. A reactive poly(ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio: The substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Anal. Chem. 2005, 77, 1075–1080.CrossRefGoogle Scholar
  30. [30]
    Ansari, A.; Lee–Montiel, F. T.; Amos, J. R.; Imoukhuede, P. I. Secondary anchor targeted cell release. Biotechnol. Bioeng. 2015, 112, 2214–2227.CrossRefGoogle Scholar
  31. [31]
    Ansari, A.; Patel, R.; Schultheis, K.; Naumovski, V.; Imoukhuede, P. I. A method of targeted cell isolation via glass surface functionalization. J. Vis. Exp. 2016, e54315.Google Scholar
  32. [32]
    Lagunas, A.; Comelles, J.; Martínez, E.; Samitier, J. Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin–streptavidin interaction for biological applications. Langmuir 2010, 26, 14154–14161.CrossRefGoogle Scholar
  33. [33]
    Frischauf, A. M. Digestion of DNA: Size fractionation. Methods Enzymol. 1987, 152, 183–189.CrossRefGoogle Scholar
  34. [34]
    Kimura, T.; Nakamura, N.; Sasaki, N.; Hashimoto, Y.; Sakaguchi, S.; Kimura, S.; Kishida, A. Capture and release of target cells using a surface that immobilizes an antibody via desthiobiotin–avidin interaction. Sens. Mater. 2016, 28, 1255–1263.Google Scholar
  35. [35]
    Segura, T.; Anderson, B. C.; Chung, P. H.; Webber, R. E.; Shull, K. R.; Shea, L. D. Crosslinked hyaluronic acid hydrogels: A strategy to functionalize and pattern. Biomaterials 2005, 26, 359–371.CrossRefGoogle Scholar
  36. [36]
    Liu, H. L.; Liu, X. L.; Meng, J. X.; Zhang, P. C.; Yang, G.; Su, B.; Sun, K.; Chen, L.; Han, D.; Wang, S. T. et al. Hydrophobic interaction–mediated capture and release of cancer cells on thermoresponsive nanostructured surfaces. Adv. Mater. 2013, 25, 922–927.CrossRefGoogle Scholar
  37. [37]
    Wan, Y.; Liu, Y. L.; Allen, P. B.; Asghar, W.; Mahmood, M. A. I.; Tan, J. F.; Duhon, H.; Kim, Y. T.; Ellington, A. D.; Iqbal, S. M. Capture, isolation and release of cancer cells with aptamer–functionalized glass bead array. Lab Chip 2012, 12, 4693–4701.CrossRefGoogle Scholar
  38. [38]
    Zhang, Z. Y.; Chen, N. C.; Li, S. H.; Battig, M. R.; Wang, Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 2012, 134, 15716–15719.CrossRefGoogle Scholar
  39. [39]
    Ramaswamy, V.; Monsalve, A.; Sautina, L.; Segal, M. S.; Dobson, J.; Allen, J. B. DNA aptamer assembly as a vascular endothelial growth factor receptor agonist. Nucleic Acid Ther. 2015, 25, 227–234.CrossRefGoogle Scholar
  40. [40]
    Chen, L.; Liu, X. L.; Su, B.; Li, J.; Jiang, L.; Han, D.; Wang, S. T. Aptamer–mediated efficient capture and release of T lymphocytes on nanostructured surfaces. Adv. Mater. 2011, 23, 4376–4380.CrossRefGoogle Scholar
  41. [41]
    Chen, N. C.; Zhang, Z. Y.; Soontornworajit, B.; Zhou, J.; Wang, Y. Cell adhesion on an artificial extracellular matrix using aptamer–functionalized PEG hydrogels. Biomaterials 2012, 33, 1353–1362.CrossRefGoogle Scholar
  42. [42]
    Zhao, N.; Battig, M. R.; Xu, M.; Wang, X. L.; Xiong, N.; Wang, Y. Development of a dual–functional hydrogel using RGD and anti–VEGF aptamer. Macromol. Biosci. 2017, 17, 1700201.CrossRefGoogle Scholar
  43. [43]
    Chen, H. W.; Medley, C. D.; Sefah, K.; Shangguan, D. H.; Tang, Z. W.; Meng, L.; Smith, J. E.; Tan, W. H. Molecular recognition of small–cell lung cancer cells using aptamers. ChemMedChem 2008, 3, 991–1001.CrossRefGoogle Scholar
  44. [44]
    Swaminathan, V. V.; Gannavaram, S.; Li, S. H.; Hu, H.; Yeom, J.; Wang, Y.; Zhu, L. K. Microfluidic platform with hierarchical micro/nanostructures and SELEX nucleic acid aptamer coating for isolation of circulating tumor cells. In Proceedings of the 13th IEEE International Conference on Nanotechnology, Beijing, China, 2013, pp 370–373.Google Scholar
  45. [45]
    Delač, M.; Motaln, H.; Ulrich, H.; Lah, T. T. Aptamer for imaging and therapeutic targeting of brain tumor glioblastoma. Cytometry A 2015, 87, 806–816.CrossRefGoogle Scholar
  46. [46]
    Bunka, D. H. J.; Stockley, P. G. Aptamers come of age—At last. Nat. Rev. Microbiol. 2006, 4, 588–596.CrossRefGoogle Scholar
  47. [47]
    Zhang, X. L.; Battig, M. R.; Chen, N. C.; Gaddes, E. R.; Duncan, K. L.; Wang, Y. Chimeric aptamer–gelatin hydrogels as an extracellular matrix mimic for loading cells and growth factors. Biomacromolecules 2016, 17, 778–787.CrossRefGoogle Scholar
  48. [48]
    Gotrik, M. R.; Feagin, T. A.; Csordas, A. T.; Nakamoto, M. A.; Soh, H. T. Advancements in aptamer discovery technologies. Acc. Chem. Res. 2016, 49, 1903–1910.CrossRefGoogle Scholar
  49. [49]
    Li, S. H.; Chen, N. C.; Zhang, Z. Y.; Wang, Y. Endonucleaseresponsive aptamer–functionalized hydrogel coating for sequential catch and release of cancer cells. Biomaterials 2013, 34, 460–469.CrossRefGoogle Scholar
  50. [50]
    Senaratne, W.; Andruzzi, L.; Ober, C. K. Self–assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules 2005, 6, 2427–2448.CrossRefGoogle Scholar
  51. [51]
    Gao, Y.; Li, W. J.; Pappas, D. Recent advances in microfluidic cell separations. Analyst 2013, 138, 4714–4721.CrossRefGoogle Scholar
  52. [52]
    Nolan, J. P.; Condello, D.; Duggan, E.; Naivar, M.; Novo, D. Visible and near infrared fluorescence spectral flow cytometry. Cytometry A 2013, 83, 253–264.CrossRefGoogle Scholar
  53. [53]
    Kuntaegowdanahalli, S. S.; Bhagat, A. A. S.; Kumar, G.; Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 2009, 9, 2973–2980.CrossRefGoogle Scholar
  54. [54]
    Mizuarai, S.; Takahashi, K.; Kobayashi, T.; Kotani, H. Advances in isolation and characterization of homogeneous cell populations using laser microdissection. Histol. Histopathol. 2005, 20, 139–146.Google Scholar
  55. [55]
    Chen, S.; Weddell, J.; Gupta, P.; Conard, G.; Parkin, J.; Imoukhuede, P. I. qFlow cytometry–based receptoromic screening: A high–throughput quantification approach informing biomarker selection and nanosensor development. In Biomedical Nanotechnology; Petrosko, S. H.; Day, E. S., Eds.; Humana Press: New York, 2017; pp 117–138.CrossRefGoogle Scholar
  56. [56]
    Imoukhuede, P. I.; Popel, A. S. Quantification and cell–to–cell variation of vascular endothelial growth factor receptors. Exp. Cell Res. 2011, 317, 955–965.CrossRefGoogle Scholar
  57. [57]
    Imoukhuede, P. I.; Popel, A. S. Expression of VEGF receptors on endothelial cells in mouse skeletal muscle. PLoS One 2012, 7, e44791.CrossRefGoogle Scholar
  58. [58]
    Ariyasu, S.; Hanaya, K.; Watanabe, E.; Suzuki, T.; Horie, K.; Hayase, M.; Abe, R.; Aoki, S. Selective capture and collection of live target cells using a photoreactive silicon wafer device modified with antibodies via a photocleavable linker. Langmuir 2012, 28, 13118–13126.CrossRefGoogle Scholar
  59. [59]
    Regehr, K. J.; Domenech, M.; Koepsel, J. T.; Carver, K. C.; Ellison–Zelski, S. J.; Murphy, W. L.; Schuler, L. A.; Alarid, E. T.; Beebe, D. J. Biological implications of polydimethylsiloxane–based microfluidic cell culture. Lab Chip 2009, 9, 2132–2139.CrossRefGoogle Scholar
  60. [60]
    Vermette, P.; Gengenbach, T.; Divisekera, U.; Kambouris, P. A.; Griesser, H. J.; Meagher, L. Immobilization and surface characterization of NeutrAvidin biotin–binding protein on different hydrogel interlayers. J. Colloid Interface Sci. 2003, 259, 13–26.CrossRefGoogle Scholar
  61. [61]
    Lin, M.; Chen, J. F.; Lu, Y. T.; Zhang, Y.; Song, J. Z.; Hou, S.; Ke, Z. F.; Tseng, H. R. Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells. Acc. Chem. Res. 2014, 47, 2941–2950.CrossRefGoogle Scholar
  62. [62]
    Compton, J. L.; Luo, J. C.; Ma, H.; Botvinick, E.; Venugopalan, V. High–throughput optical screening of cellular mechanotransduction. Nat. Photonics 2014, 8, 710–715.CrossRefGoogle Scholar
  63. [63]
    Bacakova, L.; Filova, E.; Parizek, M.; Ruml, T.; Svorcik, V. Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants. Biotechnol. Adv. 2011, 29, 739–767.CrossRefGoogle Scholar
  64. [64]
    Jiang, X. Y.; Ferrigno, R.; Mrksich, M.; Whitesides, G. M. Electrochemical desorption of self–assembled monolayers noninvasively releases patterned cells from geometrical confinements. J. Am. Chem. Soc. 2003, 125, 2366–2367.CrossRefGoogle Scholar
  65. [65]
    Khademhosseini, A.; Suh, K. Y.; Yang, J. M.; Eng, G.; Yeh, J.; Levenberg, S.; Langer, R. Layer–by–layer deposition of hyaluronic acid and poly–L–lysine for patterned cell co–cultures. Biomaterials 2004, 25, 3583–3592.CrossRefGoogle Scholar
  66. [66]
    Wu, H. W.; Lin, C. C.; Lee, G. B. Stem cells in microfluidics. Biomicrofluidics 2011, 5, 013401.CrossRefGoogle Scholar
  67. [67]
    Ingber, D. E. Reverse engineering human pathophysiology with organs–on–chips. Cell 2016, 164, 1105–1109.CrossRefGoogle Scholar
  68. [68]
    Mahmood, M. A. I.; Arafat, C. M. A.; Kim, Y. T.; Iqbal, S. M. Quantitative classification of tumor cell morphological changes on selectively functionalized biochips. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Osaka, Japan, 2013, pp 4164–4166.Google Scholar
  69. [69]
    Zhao, Y. J.; Xu, D. K.; Tan, W. H. Aptamer–functionalized nano/micro–materials for clinical diagnosis: Isolation, release and bioanalysis of circulating tumor cells. Integr. Biol. 2017, 9, 188–205.CrossRefGoogle Scholar
  70. [70]
    Frith, J. E.; Mills, R. J.; Cooper–White, J. J. Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J. Cell Sci. 2012, 125, 317–327.CrossRefGoogle Scholar
  71. [71]
    Zheng, X. J.; Jiang, L. N.; Schroeder, J.; Stopeck, A.; Zohar, Y. Isolation of viable cancer cells in antibodyfunctionalized microfluidic devices. Biomicrofluidics 2014, 8, 024119.CrossRefGoogle Scholar
  72. [72]
    Boyer, M.; Townsend, L. E.; Vogel, L. M.; Falk, J.; Reitz–Vick, D.; Trevor, K. T.; Villalba, M.; Bendick, P. J.; Glover, J. L. Isolation of endothelial cells and their progenitor cells from human peripheral blood. J. Vasc. Surg. 2000, 31, 181–189.CrossRefGoogle Scholar
  73. [73]
    Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239.CrossRefGoogle Scholar
  74. [74]
    Murthy, S. K.; Sin, A.; Tompkins, R. G.; Toner, M. Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 2004, 20, 11649–11655.CrossRefGoogle Scholar
  75. [75]
    Bratskaya, S.; Marinin, D.; Nitschke, M.; Pleul, D.; Schwarz, S.; Simon, F. Polypropylene surface functionalization with chitosan. J. Adhes. Sci. Technol. 2004, 18, 1173–1186.CrossRefGoogle Scholar
  76. [76]
    Villanueva, M. E.; González, J. A.; Rodríguez–Castellón, E.; Teves, S.; Copello, G. J. Antimicrobial surface functionalization of PVC by a guanidine based antimicrobial polymer. Mater. Sci. Eng. C 2016, 67, 214–220.CrossRefGoogle Scholar
  77. [77]
    Harris, L. G.; Tosatti, S.; Wieland, M.; Textor, M.; Richards, R. G. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non–functionalized and peptidefunctionalized poly(L–lysine)–grafted–poly(ethylene glycol) copolymers. Biomaterials 2004, 25, 4135–4148.CrossRefGoogle Scholar
  78. [78]
    Zhu, J.; Nguyen, T.; Pei, R. J.; Stojanovic, M.; Lin, Q. Specific capture and temperature–mediated release of cells in an aptamer–based microfluidic device. Lab Chip 2012, 12, 3504–3513.CrossRefGoogle Scholar
  79. [79]
    Mrksich, M. Tailored substrates for studies of attached cell culture. Cell. Mol. Life Sci. 1998, 54, 653–662.CrossRefGoogle Scholar
  80. [80]
    Inaba, R.; Khademhosseini, A.; Suzuki, H.; Fukuda, J. Electrochemical desorption of self–assembled monolayers for engineering cellular tissues. Biomaterials 2009, 30, 3573–3579.CrossRefGoogle Scholar
  81. [81]
    Yu, C. C.; Ho, B. C.; Juang, R. S.; Hsiao, Y. S.; Naidu, R. V. R.; Kuo, C. W.; You, Y. W.; Shyue, J. J.; Fang, J. T.; Chen, P. Poly(3,4–ethylenedioxythiophene)–based nanofiber mats as an organic bioelectronic platform for programming multiple capture/release cycles of circulating tumor cells. ACS Appl. Mater. Interfaces 2017, 9, 30329–30342.CrossRefGoogle Scholar
  82. [82]
    Love, J. C.; Wolfe, D. B.; Haasch, R.; Chabinyc, M. L.; Paul, K. E.; Whitesides, G. M.; Nuzzo, R. G. Formation and structure of self–assembled monolayers of alkanethiolates on palladium. J. Am. Chem. Soc. 2003, 125, 2597–2609.CrossRefGoogle Scholar
  83. [83]
    Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self–assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1170.CrossRefGoogle Scholar
  84. [84]
    Mullett, W. M.; Lai, E. P. C.; Yeung, J. M. Surface plasmon resonance–based immunoassays. Methods 2000, 22, 77–91.CrossRefGoogle Scholar
  85. [85]
    Walczak, M. M.; Chung, C.; Stole, S. M.; Widrig, C. A.; Porter, M. D. Structure and interfacial properties of spontaneously adsorbed n–alkanethiolate monolayers on evaporated silver surfaces. J. Am. Chem. Soc. 1991, 113, 2370–2378.CrossRefGoogle Scholar
  86. [86]
    Li, Z. Y.; Chang, S. C.; Williams, R. S. Self–assembly of alkanethiol molecules onto platinum and platinum oxide surfaces. Langmuir 2003, 19, 6744–6749.CrossRefGoogle Scholar
  87. [87]
    Cerqueira, M. R. F.; Santos, M. S. F.; Matos, R. C.; Gutz, I. G. R.; Angnes, L. Use of poly(methyl methacrylate)/polyethyleneimine flow microreactors for enzyme immobilization. Microchem. J. 2015, 118, 231–237.CrossRefGoogle Scholar
  88. [88]
    Balakrishnan, B.; Kumar, D. S.; Yoshida, Y.; Jayakrishnan, A. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility. Biomaterials 2005, 26, 3495–3502.CrossRefGoogle Scholar
  89. [89]
    Sigal, G. B.; Mrksich, M.; Whitesides, G. M. Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 1998, 120, 3464–3473.CrossRefGoogle Scholar
  90. [90]
    Liu, H. L.; Wang, S. T. Poly(N–isopropylacrylamide)–based thermo–responsive surfaces with controllable cell adhesion. Sci. China Chem. 2014, 57, 552–557.CrossRefGoogle Scholar
  91. [91]
    Chuah, Y. J.; Kuddannaya, S.; Lee, M. H. A.; Zhang, Y. L.; Kang, Y. J. The effects of poly(dimethylsiloxane) surface silanization on the mesenchymal stem cell fate. Biomater. Sci. 2015, 3, 383–390.CrossRefGoogle Scholar
  92. [92]
    Kuddannaya, S.; Chuah, Y. J.; Lee, M. H. A.; Menon, N. V.; Kang, Y.; Zhang, Y. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784.CrossRefGoogle Scholar
  93. [93]
    Marczak, B.; Butruk, B.; Ciach, T. Functionalization of polyurethane surfaces for further attachment of bioactive molecules. Challenges Mod. Technol. 2012, 3, 9–13.Google Scholar
  94. [94]
    Kuddannaya, S.; Chuah, Y.; Lee, M. H. A.; Menon, N. V.; Kang, Y. J.; Zhang, Y. L. Surface chemical modification of poly(dimethylsiloxane) for the enhanced adhesion and proliferation of mesenchymal stem cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784.CrossRefGoogle Scholar
  95. [95]
    Wan, Y.; Kim, Y. T.; Li, N.; Cho, S. K.; Bachoo, R.; Ellington, A. D.; Iqbal, S. M. Surface–immobilized aptamers for cancer cell isolation and microscopic cytology. Cancer Res. 2010, 70, 9371–9380.CrossRefGoogle Scholar
  96. [96]
    Hu, B.; Zhu, Q. K.; Xu, Z. Z.; Wu, X. B. High binding yields of viable cancer cells on amino silane functionalized surfaces. Biomed. Res. 2015, 26, 452–455.Google Scholar
  97. [97]
    Ibarlucea, B.; Fernández–Sánchez, C.; Demming, S.; Büttgenbach, S.; Llobera, A. Selective functionalisation of PDMS–based photonic lab on a chip for biosensing. Analyst 2011, 136, 3496–3502.CrossRefGoogle Scholar
  98. [98]
    Bu, J.; Kim, Y. J.; Kang, Y. T.; Lee, T. H.; Kim, J.; Kim, H.; Cho, Y. Graphene oxide coated fabric layers for the efficient isolation of circulating tumor cells. In Proceedings of the 30th International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 2017, pp 476–479.Google Scholar
  99. [99]
    Bu, J.; Kim, Y. J.; Kang, Y. T.; Lee, T. H.; Kim, J.; Cho, Y. H.; Han, S. W. Polyester fabric sheet layers functionalized with graphene oxide for sensitive isolation of circulating tumor cells. Biomaterials 2017, 125, 1–11.CrossRefGoogle Scholar
  100. [100]
    Li, W.; Reátegui, E.; Park, M. H.; Castleberry, S.; Deng, J. Z.; Hsu, B.; Mayner, S.; Jensen, A. E.; Sequist, L. V.; Maheswaran, S. et al. Biodegradable nano–films for capture and non–invasive release of circulating tumor cells. Biomaterials 2015, 65, 93–102.CrossRefGoogle Scholar
  101. [101]
    Reátegui, E.; Van der Vos, K. E.; Lai, C. P.; Zeinali, M.; Atai, N. A.; Aldikacti, B.; Floyd, F. P. Jr.; Khankhel, A.; Thapar, V.; Hochberg, F. H.; Sequist, L. V. et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor–specific extracellular vesicles. Nat. Commun. 2018, 9, 175.CrossRefGoogle Scholar
  102. [102]
    Hyun, J.; Zhu, Y. J.; Liebmann–Vinson, A.; Beebe, T. P.; Chilkoti, A. Microstamping on an activated polymer surface: Patterning biotin and streptavidin onto common polymeric biomaterials. Langmuir 2001, 17, 6358–6367.CrossRefGoogle Scholar
  103. [103]
    Yadav, A. R.; Sriram, R.; Carter, J. A.; Miller, B. L. Comparative study of solution–phase and vapor–phase deposition of aminosilanes on silicon dioxide surfaces. Mater. Sci. Eng. C 2014, 35, 283–290.CrossRefGoogle Scholar
  104. [104]
    Andree, K. C.; Barradas, A. M. C.; Nguyen, A. T.; Mentink, A.; Stojanovic, I.; Baggerman, J.; Van Dalum, J.; Van Rijn, C. J. M.; Terstappen, L. W. M. M. Capture of tumor cells on anti–EpCAM–functionalized poly(acrylic acid)–coated surfaces. ACS Appl. Mater. Interfaces 2016, 8, 14349–14356.CrossRefGoogle Scholar
  105. [105]
    Kurkuri, M. D.; Al–Ejeh, F.; Shi, J. Y.; Palms, D.; Prestidge, C.; Griesser, H. J.; Brown, M. P.; Thierry, B. Plasma functionalized PDMS microfluidic chips: Towards pointof–care capture of circulating tumor cells. J. Mater. Chem. 2011, 21, 8841–8848.CrossRefGoogle Scholar
  106. [106]
    Vasdekis, A. E.; O’Neil, C. P.; Hubbell, J. A.; Psaltis, D. Microfluidic assays for DNA manipulation based on a block copolymer immobilization strategy. Biomacromolecules 2010, 11, 827–831.CrossRefGoogle Scholar
  107. [107]
    Gach, P. C.; Attayek, P. J.; Whittlesey, R. L.; Yeh, J. J.; Allbritton, N. L. Micropallet arrays for the capture, isolation and culture of circulating tumor cells from whole blood of mice engrafted with primary human pancreatic adenocarcinoma. Biosens. Bioelectron. 2014, 54, 476–483.CrossRefGoogle Scholar
  108. [108]
    Custódio, C. A.; Frias, A. M.; del Campo, A.; Reis, R. L.; Mano, J. F. Selective cell recruitment and spatially controlled cell attachment on instructive chitosan surfaces functionalized with antibodies. Biointerphases 2012, 7, 65.CrossRefGoogle Scholar
  109. [109]
    Rafique, A.; Mahmood Zia, K.; Zuber, M.; Tabasum, S.; Rehman, S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int. J. Biol. Macromol. 2016, 87, 141–154.CrossRefGoogle Scholar
  110. [110]
    Usman, A.; Mahmood Zia, K.; Zuber, M.; Tabasum, S.; Rehman, S.; Zia, F. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 2016, 86, 630–645.CrossRefGoogle Scholar
  111. [111]
    Raman, R.; Grant, L.; Seo, Y.; Cvetkovic, C.; Gapinske, M.; Palasz, A.; Dabbous, H.; Kong, H.; Pinera, P. P.; Bashir, R. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 2017, 6, 1700030.CrossRefGoogle Scholar
  112. [112]
    Shaporenko, A.; Cyganik, P.; Buck, M.; Terfort, A.; Zharnikov, M. Self–assembled monolayers of aromatic selenolates on noble metal substrates. J. Phys. Chem. B 2005, 109, 13630–13638.CrossRefGoogle Scholar
  113. [113]
    Aswal, D. K.; Lenfant, S.; Guerin, D.; Yakhmi, J. V.; Vuillaume, D. Self assembled monolayers on silicon for molecular electronics. Anal. Chim. Acta 2006, 568, 84–108.CrossRefGoogle Scholar
  114. [114]
    Dillmore, W. S.; Yousaf, M. N.; Mrksich, M. A photochemical method for patterning the immobilization of ligands and cells to self–assembled monolayers. Langmuir 2004, 20, 7223–7231.CrossRefGoogle Scholar
  115. [115]
    Kutsenko, V. Y.; Lopatina, Y. Y.; Bossard–Giannesini, L.; Marchenko, O. A.; Pluchery, O.; Snegir, S. V. Alkylthiol self–assembled monolayers on Au(111) with tailored tail groups for attaching gold nanoparticles. Nanotechnology 2017, 28, 235603.CrossRefGoogle Scholar
  116. [116]
    Mrksich, M.; Chen, C. S.; Xia, Y.; Dike, L. E.; Ingber, D. E.; Whitesides, G. M. Controlling cell attachment on contoured surfaces with self–assembled monolayers of alkanethiolates on gold. Proc. Natl. Acad. Sci. USA 1996, 93, 10775–10778.CrossRefGoogle Scholar
  117. [117]
    Biebuyck, H. A.; Bain, C. D.; Whitesides, G. M. Comparison of organic monolayers on polycrystalline gold spontaneously assembled from solutions containing dialkyl disulfides or alkanethiols. Langmuir 1994, 10, 1825–1831.CrossRefGoogle Scholar
  118. [118]
    Muskal, N.; Turyan, I.; Mandler, D. Self–assembled monolayers on mercury surfaces. J. Electroanal. Chem. 1996, 409, 131–136.CrossRefGoogle Scholar
  119. [119]
    Berthier, E.; Young, E. W. K.; Beebe, D. Engineers are from PDMS–land, biologists are from polystyrenia. Lab Chip 2012, 12, 1224–1237.CrossRefGoogle Scholar
  120. [120]
    Chaloupková, Z.; Balzerová, A.; Bařinková, J.; Medříková, Z.; Šácha, P.; Beneš, P.; Ranc, V.; Konvalinka, J.; Zbořil, R. Label–free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Anal. Chim. Acta 2018, 997, 44–51.CrossRefGoogle Scholar
  121. [121]
    Carvalho, A.; Geissler, M.; Schmid, H.; Michel, B.; Delamarche, E. Self–assembled monolayers of eicosanethiol on palladium and their use in microcontact printing. Langmuir 2002, 18, 2406–2412.CrossRefGoogle Scholar
  122. [122]
    Bain, C. D.; Whitesides, G. M. Molecular–level control over surface order in self–assembled monolayer films of thiols on gold. Science 1988, 240, 62–63.CrossRefGoogle Scholar
  123. [123]
    Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 1989, 111, 321–335.CrossRefGoogle Scholar
  124. [124]
    Su, X. D.; Wu, Y. J.; Robelek, R.; Knoll, W. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 2005, 21, 348–353.CrossRefGoogle Scholar
  125. [125]
    Dubois, L. H.; Zegarski, B. R.; Nuzzo, R. G. Molecular ordering of organosulfur compounds on Au(111) and Au(100): Adsorption from solution and in ultrahigh vacuum. J. Chem. Phys. 1993, 98, 678–688.CrossRefGoogle Scholar
  126. [126]
    Fenter, P.; Eisenberger, P.; Li, J.; Camillone, N.; Bernasek, S.; Scoles, G.; Ramanarayanan, T. A.; Liang, K. S. Structure of octadecyl thiol self–assembled on the silver(111) surface: An incommensurate monolayer. Langmuir 1991, 7, 2013–2016.CrossRefGoogle Scholar
  127. [127]
    Séguin, C.; McLachlan, J. M.; Norton, P. R.; Lagugné–Labarthet, F. Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl. Surf. Sci. 2010, 256, 2524–2531.CrossRefGoogle Scholar
  128. [128]
    Li, Y.; Yuan, B.; Ji, H.; Han, D.; Chen, S. Q.; Tian, F.; Jiang, X. Y. A method for patterning multiple types of cells by using electrochemical desorption of self–assembled monolayers within microfluidic channels. Angew. Chem., Int. Ed. 2007, 46, 1094–1096.CrossRefGoogle Scholar
  129. [129]
    Yousaf, M. N.; Houseman, B. T.; Mrksich, M. Using electroactive substrates to pattern the attachment of two different cell populations. Proc. Natl. Acad. Sci. USA 2001, 98, 5992–5996.CrossRefGoogle Scholar
  130. [130]
    Zhang, P. C.; Chen, L.; Xu, T. L.; Liu, H. L.; Liu, X. L.; Meng, J. X.; Yang, G.; Jiang, L.; Wang, S. T. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv. Mater. 2013, 25, 3566–3570.CrossRefGoogle Scholar
  131. [131]
    Bhattacharya, S.; Datta, A.; Berg, J. M.; Gangopadhyay, S. Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen–plasma treatment and correlation with bond strength. J. Microelectromech. Syst. 2005, 14, 590–597.CrossRefGoogle Scholar
  132. [132]
    Gervais, T.; El–Ali, J.; Günther, A.; Jensen, K. F. Flowinduced deformation of shallow microfluidic channels. Lab Chip 2006, 6, 500–507.CrossRefGoogle Scholar
  133. [133]
    Watkins, N. N.; Hassan, U.; Damhorst, G.; Ni, H. K.; Vaid, A.; Rodriguez, W.; Bashir, R. Microfluidic CD4+ and CD8+ T lymphocyte counters for point–of–care HIV diagnostics using whole blood. Sci. Transl. Med. 2013, 5, 214ra170.CrossRefGoogle Scholar
  134. [134]
    Mikolajczyk, S. D.; Millar, L. S.; Tsinberg, P.; Coutts, S. M.; Zomorrodi, M.; Pham, T.; Bischoff, F. Z.; Pircher, T. J. Detection of EpCAM–negative and cytokeratin–negative circulating tumor cells in peripheral blood. J. Oncol. 2011, 2011, 252361.CrossRefGoogle Scholar
  135. [135]
    Myung, J. H.; Launiere, C. A.; Eddington, D. T.; Hong, S. Enhanced tumor cell isolation by a biomimetic combination of E–selectin and anti–EpCAM: Implications for the effective separation of circulating tumor cells (CTCs). Langmuir 2010, 26, 8589–8596.CrossRefGoogle Scholar
  136. [136]
    Pecot, C. V.; Bischoff, F. Z.; Mayer, J. A.; Wong, K. L.; Pham, T.; Bottsford–Miller, J.; Stone, R. L.; Lin, Y. G.; Jaladurgam, P.; Roh, J. W. et al. A novel platform for detection of CK+ and CK–CTCs. Cancer Discov. 2011, 1, 580–586.CrossRefGoogle Scholar
  137. [137]
    Adams, A. A.; Okagbare, P. I.; Feng, J.; Hupert, M. L.; Patterson, D.; Götten, J.; McCarley, R. L.; Nikitopoulos, D.; Murphy, M. C.; Soper, S. A. Highly efficient circulating tumor cell isolation from whole blood and label–free enumeration using polymer–based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 2008, 130, 8633–8641.CrossRefGoogle Scholar
  138. [138]
    Karabacak, N. M.; Spuhler, P. S.; Fachin, F.; Lim, E. J.; Pai, V.; Ozkumur, E.; Martel, J. M.; Kojic, N.; Smith, K.; Chen, P. I. et al. Microfluidic, marker–free isolation of circulating tumor cells from blood samples. Nat. Protoc. 2014, 9, 694–710.CrossRefGoogle Scholar
  139. [139]
    Kim, T. H.; Yoon, H. J.; Stella, P.; Nagrath, S. Cascaded spiral microfluidic device for deterministic and high purity continuous separation of circulating tumor cells. Biomicrofluidics 2014, 8, 064117.CrossRefGoogle Scholar
  140. [140]
    Cohen, S. J.; Punt, C. J. A.; Iannotti, N.; Saidman, B. H.; Sabbath, K. D.; Gabrail, N. Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M. C. et al. Relationship of circulating tumor cells to tumor response, progression–free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 3213–3221.CrossRefGoogle Scholar
  141. [141]
    O’Flaherty, J. D.; Gray, S.; Richard, D.; Fennell, D.; O’Leary, J. J.; Blackhall, F. H.; O’Byrne, K. J. Circulating tumour cells, their role in metastasis and their clinical utility in lung cancer. Lung Cancer 2012, 76, 19–25.CrossRefGoogle Scholar
  142. [142]
    Saneinejad, S.; Shoichet, M. S. Patterned glass surfaces direct cell adhesion and process outgrowth of primary neurons of the central nervous system. J. Biomed. Mater. Res. 1998, 42, 13–19.CrossRefGoogle Scholar
  143. [143]
    Mahmood, M. A. I.; Wan, Y.; Islam, M.; Ali, W.; Hanif, M.; Kim, Y. T.; Iqbal, S. M. Micro+nanotexturing of substrates to enhance ligand–assisted cancer cell isolation. Nanotechnology 2014, 25, 475102.CrossRefGoogle Scholar
  144. [144]
    Sheng, W. A.; Chen, T.; Kamath, R.; Xiong, X. L.; Tan, W. H.; Fan, Z. H. Aptamer–enabled efficient isolation of cancer cells from whole blood using a microfluidic device. Anal. Chem. 2012, 84, 4199–4206.CrossRefGoogle Scholar
  145. [145]
    Chen, H. W.; Medley, C. D.; Smith, J. E.; Sefah, K.; Shangguan, D.; Tang, Z. W.; Meng, L.; Tan, W. H. Molecular recognition of small–cell lung cancer cells using aptamers. ChemMedChem. 2008, 3, 991–1001.CrossRefGoogle Scholar
  146. [146]
    González, M.; Bagatolli, L. A.; Echabe, I.; Arrondo, J. L. R.; Argarañ, C. E.; Cantor, C. R.; Fidelio, G. D. Interaction of biotin with streptavidin thermostability and conformational changes upon binding. J. Biol. Chem. 1997, 272, 11288–11294.CrossRefGoogle Scholar
  147. [147]
    Holmberg, A.; Blomstergren, A.; Nord, O.; Lukacs, M.; Lundeberg, J.; Uhlén, M. The biotin–streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005, 26, 501–510.CrossRefGoogle Scholar
  148. [148]
    Kobayashi, H.; Sakahara, H.; Endo, K.; Hosono, M.; Yao, Z. S.; Toyama, S.; Konishi, J. Comparison of the chase effects of avidin, streptavidin, neutravidin, and avidin–ferritin on a radiolabeled biotinylated anti–tumor monoclonal antibody. Jpn. J. Cancer Res. 1995, 86, 310–314.CrossRefGoogle Scholar
  149. [149]
    Wilchek, M.; Bayer, E. A. Applications of avidin–biotin technology: Literature survey. Methods Enzymol. 1990, 184, 5–13.CrossRefGoogle Scholar
  150. [150]
    Lee, G. U.; Kidwell, D. A.; Colton, R. J. Sensing discrete streptavidin–biotin interactions with atomic force microscopy. Langmuir 1994, 10, 354–357.CrossRefGoogle Scholar
  151. [151]
    Nguyen, T. T.; Sly, K. L.; Conboy, J. C. Comparison of the energetics of avidin, streptavidin, neutravidin, and anti–biotin antibody binding to biotinylated lipid bilayer examined by second–harmonic generation. Anal. Chem. 2012, 84, 201–208.CrossRefGoogle Scholar
  152. [152]
    Barton, A. C.; Davis, F.; Higson, S. P. J. Labeless immunosensor assay for the stroke marker protein neuron specific enolase based upon an alternating current impedance protocol. Anal. Chem. 2008, 80, 9411–9416.CrossRefGoogle Scholar
  153. [153]
    Liu, H. L.; Li, Y. Y.; Sun, K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.; Jiang, L. Dual–responsive surfaces modified with phenylboronic acid–containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 2013, 135, 7603–7609.CrossRefGoogle Scholar
  154. [154]
    Hsiao, Y. S.; Ho, B. C.; Yan, H. X.; Kuo, C. W.; Chueh, D. Y.; Yu, H. H.; Chen, P. L. Integrated 3D conducting polymer–based bioelectronics for capture and release of circulating tumor cells. J. Mater. Chem. B 2015, 3, 5103–5110.CrossRefGoogle Scholar
  155. [155]
    Guillaume–Gentil, O.; Akiyama, Y.; Schuler, M.; Tang, C.; Textor, M.; Yamato, M.; Okano, T.; Vörös, J. Polyelectrolyte coatings with a potential for electronic control and cell sheet engineering. Adv. Mater. 2008, 20, 560–565.CrossRefGoogle Scholar
  156. [156]
    Hsiao, Y. S.; Kuo, C. W.; Chen, P. L. Electrodes: Multifunctional graphene–PEDOT microelectrodes for on–chip manipulation of human mesenchymal stem cells (Adv. Funct. Mater. 37/2013). Adv. Funct. Mater. 2013, 23, 4648.CrossRefGoogle Scholar
  157. [157]
    Persson, K. M.; Karlsson, R.; Svennersten, K.; Löffler, S.; Jager, E. W. H.; Richter–Dahlfors, A.; Konradsson, P.; Berggren, M. Electronic control of cell detachment using a self–doped conducting polymer. Adv. Mater. 2011, 23, 4403–4408.CrossRefGoogle Scholar
  158. [158]
    Kwak, B.; Lee, J.; Lee, J.; Kim, H. S.; Kang, S.; Lee, Y. Spiral shape microfluidic channel for selective isolating of heterogenic circulating tumor cells. Biosens. Bioelectron. 2018, 101, 311–316.CrossRefGoogle Scholar
  159. [159]
    Hoffmann, S.; Spee, C.; Murata, T.; Cui, J. Z.; Ryan, S. J.; Hinton, D. R. Rapid isolation of choriocapillary endothelial cells by Lycopersicon esculentum–coated Dynabeads. Graefe’s Arch. Clin. Exp. Ophthalmol. 1998, 236, 779–784.CrossRefGoogle Scholar
  160. [160]
    Jackson, C. J.; Garbett, P. K.; Nissen, B.; Schrieber, L. Binding of human endothelium to Ulex europaeus I–coated Dynabeads: Application to the isolation of microvascular endothelium. J. Cell Sci. 1990, 96, 257–262.Google Scholar
  161. [161]
    Tiwari, A.; Punshon, G.; Kidane, A.; Hamilton, G.; Seifalian, A. M. Magnetic beads (Dynabead™) toxicity to endothelial cells at high bead concentration: Implication for tissue engineering of vascular prosthesis. Cell Biol. Toxicol. 2003, 19, 265–272.CrossRefGoogle Scholar
  162. [162]
    Den Toonder, J. Circulating tumor cells: The grand challenge. Lab Chip 2011, 11, 375–377.CrossRefGoogle Scholar
  163. [163]
    Yu, M.; Stott, S.; Toner, M.; Maheswaran, S.; Haber, D. A. Circulating tumor cells: Approaches to isolation and characterization. J. Cell Biol. 2011, 192, 373–382.CrossRefGoogle Scholar
  164. [164]
    Miyazaki, H.; Kato, K.; Teramura, Y.; Iwata, H. A collagen–binding mimetic of neural cell adhesion molecule. Bioconjug. Chem. 2008, 19, 1119–1123.CrossRefGoogle Scholar
  165. [165]
    Kato, K.; Sato, H.; Iwata, H. Ultrastructural study on the specific binding of genetically engineered epidermal growth factor to type i collagen fibrils. Bioconjug. Chem. 2007, 18, 2137–2143.CrossRefGoogle Scholar
  166. [166]
    Raman, R.; Bhaduri, B.; Mir, M.; Shkumatov, A.; Lee, M. K.; Popescu, G.; Kong, H.; Bashir, R. Highresolution projection microstereolithography for patterning of neovasculature. Adv. Healthc. Mater. 2016, 5, 610–619.CrossRefGoogle Scholar
  167. [167]
    Raman, R.; Grant, L.; Seo, Y.; Cvetkovic, C.; Gapinske, M.; Palasz, A.; Dabbous, H.; Kong, H.; Pinera, P. P.; Bashir, R. Damage, healing, and remodeling in optogenetic skeletal muscle bioactuators. Adv. Healthc. Mater. 2017, 6, 1700030.CrossRefGoogle Scholar
  168. [168]
    Silva, A. K. A.; Richard, C.; Ducouret, G.; Bessodes, M.; Scherman, D.; Merten, O. W. Xyloglucan–derivatized films for the culture of adherent cells and their thermocontrolled detachment: A promising alternative to cells sensitive to protease treatment. Biomacromolecules 2013, 14, 512–519.CrossRefGoogle Scholar
  169. [169]
    Lai, Y. K.; Fan, R. F. T. Effect of heparin–surfacemodified poly(methyl methacrylate) intraocular lenses on the postoperative inflammation in an Asian population. J. Cataract Refract. Surg. 1996, 22 Suppl 1, 830–834.Google Scholar
  170. [170]
    Burdick, J. A.; Prestwich, G. D. Hyaluronic acid hydrogels for biomedical applications. Adv. Mater. 2011, 23, H41–H56.CrossRefGoogle Scholar
  171. [171]
    Abdeen, A. A.; Weiss, J. B.; Lee, J.; Kilian, K. A. Matrix composition and mechanics direct proangiogenic signaling from mesenchymal stem cells. Tissue Eng. Part A 2014, 20, 2737–2745.CrossRefGoogle Scholar
  172. [172]
    Nikitovic, D.; Berdiaki, A.; Banos, A.; Tsatsakis, A.; Karamanos, N. K.; Tzanakakis, G. N. Could growth factormediated extracellular matrix deposition and degradation offer the ground for directed pharmacological targeting in fibrosarcoma? Curr. Med. Chem. 2013, 20, 2868–2880.CrossRefGoogle Scholar
  173. [173]
    Shao, Z.; Friedlander, M.; Hurst, C. G.; Cui, Z. H.; Pei, D. T.; Evans, L. P.; Juan, A. M.; Tahir, H.; Duhamel, F.; Chen, J. et al. Correction: Choroid sprouting assay: An ex vivo model of microvascular angiogenesis. PLoS One 2013, 8, e69552.CrossRefGoogle Scholar
  174. [174]
    Soontornworajit, B.; Zhou, J.; Shaw, M. T.; Fan, T. H.; Wang, Y. Hydrogel functionalization with DNA aptamers for sustained PDGF–BB release. Chem. Commun. 2010, 46, 1857–1859.CrossRefGoogle Scholar
  175. [175]
    Welch, N. G.; Scoble, J. A.; Muir, B. W.; Pigram, P. J. Orientation and characterization of immobilized antibodies for improved immunoassays (review). Biointerphases 2017, 12, 02D301.CrossRefGoogle Scholar
  176. [176]
    Kusnezow, W.; Hoheisel, J. D. Solid supports for microarray immunoassays. J. Mol. Recognit. 2003, 16, 165–176.CrossRefGoogle Scholar
  177. [177]
    Peluso, P.; Wilson, D. S.; Do, D.; Tran, H.; Venkatasubbaiah, M.; Quincy, D.; Heidecker, B.; Poindexter, K.; Tolani, N.; Phelan, M. et al. Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 2003, 312, 113–124.CrossRefGoogle Scholar
  178. [178]
    Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo–responsive polymeric surfaces; control of attachment and detachment of cultured cells. Die Makromol. Chem., Rapid Commun. 1990, 11, 571–576.CrossRefGoogle Scholar
  179. [179]
    Okano, T.; Yamada, N.; Sakai, H.; Sakurai, Y. A novel recovery system for cultured cells using plasma–treated polystyrene dishes grafted with poly(N–isopropylacrylamide). J. Biomed. Mater. Res. 1993, 27, 1243–1251.CrossRefGoogle Scholar
  180. [180]
    Lippert, L. G.; Hallock, J. T.; Dadosh, T.; Diroll, B. T.; Murray, C. B.; Goldman, Y. E. NeutrAvidin functionalization of CdSe/CdS quantum nanorods and quantification of biotin binding sites using biotin–4–fluorescein fluorescence quenching. Bioconjug. Chem. 2016, 27, 562–568.CrossRefGoogle Scholar
  181. [181]
    Raman, R.; Bashir, R. Stereolithographic 3D bioprinting for biomedical applications. In Essentials of 3D Biofabrication and Translation; Atala, A.; Yoo, J. J., Eds.; Elsevier, Amsterdam, 2015; pp 89–121.Google Scholar
  182. [182]
    Gao, J.; Wang, H. L.; Shreve, A.; Iyer, R. Fullerene derivatives induce premature senescence: A new toxicity paradigm or novel biomedical applications. Toxicol. Appl. Pharmacol. 2010, 244, 130–143.CrossRefGoogle Scholar
  183. [183]
    Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. In vivo quantum–dot toxicity assessment. Small 2010, 6, 138–144.CrossRefGoogle Scholar
  184. [184]
    Kwon, O. H.; Kikuchi, A.; Yamato, M.; Sakurai, Y.; Okano, T. Rapid cell sheet detachment from Poly(Nisopropylacrylamide)–grafted porous cell culture membranes. J. Biomed. Mater. Res. 2000, 50, 82–89.CrossRefGoogle Scholar
  185. [185]
    Diéguez, L.; Winter, M. A.; Pocock, K. J.; Bremmell, K. E.; Thierry, B. Efficient microfluidic negative enrichment of circulating tumor cells in blood using roughened PDMS. Analyst 2015, 140, 3565–3572.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioengineering DepartmentUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Biomedical Engineering DepartmentWashington University in St. LouisSt. LouisUSA

Personalised recommendations