Nano Research

, Volume 11, Issue 12, pp 6304–6315 | Cite as

Single-layer Rh nanosheets with ultrahigh peroxidase-like activity for colorimetric biosensing

  • Shuangfei Cai
  • Wei Xiao
  • Haohong Duan
  • Xixi Liang
  • Chen WangEmail author
  • Rong YangEmail author
  • Yadong Li
Research Article


When the dimensionality of layered compounds decreases to the physical limit, ultimate two-dimensional (2D) anisotropy and/or quantum confinement effects may lead to extraordinary physicochemical attributes. Here, we report single-layer Rh nanosheets (NSs) exhibiting ultrahigh peroxidase-like activity, far exceeding that of horseradish peroxidase (HRP) and of most known layered nanomaterial-based peroxidase mimics. Considering per NS as an active subunit, the Rh NSs displayed a catalytic rate constant (Kcat) as high as 4.45 × 105 s–1 to H2O2, two orders of magnitude higher than those of HRP and Rh nanoparticles. The high atom efficiency of the Rh NSs can be attributed to the full exposure of surface-active Rh atoms, which greatly facilitates electron transfer and formation of superoxide anions, representing reactive oxygen species in the catalytic process. As a proof-of-concept application, the Rh NSs were successfully used as peroxidase mimics for the colorimetric detection of H2O2 and xanthine, with high sensitivity and selectivity. Moreover, a simple, rapid, and sensitive Rh-based paper sensor for ascorbic acid was also developed. In summary, this work provides a novel example of single-layer metallic NSs for biosensing.


Rh nanosheets nanozymes peroxidase-like activity colorimetric detection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development program from the Ministry of Science and Technology of China (No. 2016YFC0207102) and the National Natural Science Foundation of China (Nos. 21501034 and 21573050). Financial support from Chinese Academy of Sciences (No. XDA09030303) was also gratefully acknowledged. We thank Prof. Qinlin Guo at Institute of Physics, Chinese Academy of Sciences for help with XPS study.

Supplementary material

12274_2018_2154_MOESM1_ESM.pdf (1.1 mb)
Single-layer Rh nanosheets with ultrahigh peroxidaselike activity for colorimetric biosensing


  1. [1]
    Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.CrossRefGoogle Scholar
  2. [2]
    Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.CrossRefGoogle Scholar
  3. [3]
    Shi, W. B.; Wang, Q. L.; Long, Y. J.; Cheng, Z. L.; Chen, S. H.; Zheng, H. Z.; Huang, Y. M. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. 2011, 47, 6695–6697.CrossRefGoogle Scholar
  4. [4]
    Cai, S. F.; Jia, X. H.; Han, Q. S.; Yan, X. Y.; Yang, R.; Wang, C. Porous Pt/Ag nanoparticles with excellent multifunctional enzyme mimic activities and antibacterial effects. Nano Res. 2017, 10, 2056–2069.CrossRefGoogle Scholar
  5. [5]
    Liu, B. W.; Huang, Z. C.; Liu, J. W. Boosting the oxidase mimicking activity of nanoceria by fluoride capping: Rivaling protein enzymes and ultrasensitive F-detection. Nanoscale 2016, 8, 13562–13567.CrossRefGoogle Scholar
  6. [6]
    Wang, G. L.; Xu, X. F.; Qiu, L.; Dong, Y. M.; Li, Z, J.; Zhang, C. Dual responsive enzyme mimicking activity of AgX (X = Cl, Br, I) nanoparticles and its application for cancer cell detection. ACS Appl. Mater. Interfaces 2014, 6, 6434–6442.CrossRefGoogle Scholar
  7. [7]
    Dutta, A. K.; Maji, S. K.; Srivastava, D. N.; Mondal, A.; Biswas, P.; Paul, P.; Adhikary, B. Synthesis of FeS and FeSe nanoparticles from a single source precursor: A study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Appl. Mater. Interfaces 2012, 4, 1919–1927.CrossRefGoogle Scholar
  8. [8]
    Tao, Y.; Lin, Y. H.; Huang, Z. Z.; Ren, J. S.; Qu, X. G. Incorporating graphene oxide and gold nanoclusters: A synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv. Mater. 2013, 25, 2594–2599.CrossRefGoogle Scholar
  9. [9]
    Lin, Y. H.; Ren, J. S.; Qu, X. G. Catalytically active nanomaterials: A promising candidate for artificial enzymes. Acc. Chem. Res. 2014, 47, 1097–1105.CrossRefGoogle Scholar
  10. [10]
    Zhang, Z. J.; Zhang, X. H.; Liu, B. W.; Liu, J. W. Molecular imprinting on inorganic nanozymes for hundred-fold enzyme specificity. J. Am. Chem. Soc. 2017, 139, 5412–5419.CrossRefGoogle Scholar
  11. [11]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  12. [12]
    Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.CrossRefGoogle Scholar
  13. [13]
    Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.CrossRefGoogle Scholar
  14. [14]
    Chimene, D.; Alge, D. L.; Gaharwar, A. K. Two-dimensional nanomaterials for biomedical applications: Emerging trends and future prospects. Adv. Mater. 2015, 27, 7261–7284.CrossRefGoogle Scholar
  15. [15]
    Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.CrossRefGoogle Scholar
  16. [16]
    Xue, Y. H.; Zhang, Q.; Wang, W. J.; Cao, H.; Yang, Q. H.; Fu, L. Opening two-dimensional materials for energy conversion and storage: A concept. Adv. Energy Mater. 2017, 7, 1602684.CrossRefGoogle Scholar
  17. [17]
    Wei, J. P.; Chen, X. L.; Shi, S. G.; Mo, S. G.; Zheng, N. F. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures. Nanoscale 2015, 7, 19018–19026.CrossRefGoogle Scholar
  18. [18]
    Yan, X.; Song, Y.; Wu, X. L.; Zhu, C. Z.; Su, X. G.; Du, D.; Lin, Y. H. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale 2017, 9, 2317–2323.CrossRefGoogle Scholar
  19. [19]
    Lin, T. R.; Zhong, L. S.; Guo, L. Q.; Fu, F. F.; Chen, G. N. Seeing the diabetes: Visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 2014, 6, 11856–11862.CrossRefGoogle Scholar
  20. [20]
    Lin, T. R.; Zhong, L. S.; Song, Z. P.; Guo, L. Q.; Wu, H. Y.; Guo, Q. Q.; Chen, Y.; Fu, F. F.; Chen, G. N. Visual detection of blood glucose based on peroxidase-like activity of WS2 nanosheets. Biosens. Bioelectron. 2014, 62, 302–307.CrossRefGoogle Scholar
  21. [21]
    Wu, X. J.; Chen, T. M.; Wang, J. X. Yang, G. W. Few-layered MoSe2 nanosheets as an efficient peroxidase nanozyme for highly sensitive colorimetric detection of H2O2 and xanthine. J. Mater. Chem. B 2018, 6, 105–111.CrossRefGoogle Scholar
  22. [22]
    Chen, T. M.; Wu, X. J.; Wang, J. X.; Yang, G. W. WSe2 few layers with enzyme mimic activity for high-sensitive and high-selective visual detection of glucose. Nanoscale 2017, 9, 11806–11813.CrossRefGoogle Scholar
  23. [23]
    Lin, T. R.; Zhong, L. S.; Wang, J.; Guo, L. Q.; Wu, H. Y.; Guo, Q. Q.; Fu, F. F.; Chen, G. N. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection. Biosens. Bioelectron. 2014, 59, 89–93.CrossRefGoogle Scholar
  24. [24]
    Chen, L. J.; Sun, B.; Wang, X. D.; Qiao, F. M.; Ai, S. Y. 2D ultrathin nanosheets of Co-Al layered double hydroxides prepared in L-asparagine solution: Enhanced peroxidase-like activity and colorimetric detection of glucose. J. Mater. Chem. B 2013, 1, 2268–2274.CrossRefGoogle Scholar
  25. [25]
    Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organicframework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.CrossRefGoogle Scholar
  26. [26]
    Cai, S. F.; Han, Q. S.; Qi, C.; Lian, Z.; Jia, X. H.; Yang, R.; Wang, C. Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 2016, 8, 3685–3693.CrossRefGoogle Scholar
  27. [27]
    Tian, J. Q.; Liu, Q.; Asiri, A. M.; Qusti, A. H.; Al-Youbi, A. O.; Sun, X. P. Ultrathin graphitic carbon nitride nanosheets: A novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 2013, 5, 11604–11609.CrossRefGoogle Scholar
  28. [28]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  29. [29]
    Duan, H. H.; Yan, N.; Yu, R.; Chang, C. R.; Zhou, G.; Hu, H. S.; Rong, H. P.; Niu, Z. Q.; Mao, J. J.; Asakura, H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 2014, 5, 3093.CrossRefGoogle Scholar
  30. [30]
    Sun, P. Z.; Ma, R. Z.; Bai, X. Y.; Wang, K. L.; Zhu, H. W.; Sasaki, T. Single-layer nanosheets with exceptionally high and anisotropic hydroxyl ion conductivity. Sci. Adv. 2017, 3, e1602629.CrossRefGoogle Scholar
  31. [31]
    Guo, X. R.; Wang, Y.; Wu, F. Y.; Ni, Y. N.; Kokot, S. A. A colorimetric method of analysis for trace amounts of hydrogen peroxide with the use of the nano-properties of molybdenum disulfide. Analyst 2015, 140, 1119–1126.CrossRefGoogle Scholar
  32. [32]
    Wang, X. X.; Wu, Q.; Shan, Z.; Huang, Q. M. BSA-stabilized Au clusters as peroxidase mimetics for use in xanthine detection. Biosens. Bioelectron. 2011, 26, 3614–3619.CrossRefGoogle Scholar
  33. [33]
    Ai, L. H.; Li, L. L.; Zhang, C. H.; Fu, J.; Jiang, J. MIL-53(Fe): A metal-organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem.-Eur. J. 2013, 19, 15105–15108.CrossRefGoogle Scholar
  34. [34]
    Song, Y. J.; Wei, W. L.; Qu, X. G. Colorimetric biosensing using smart materials. Adv. Mater. 2011, 23, 4215–4236.CrossRefGoogle Scholar
  35. [35]
    Hou, C. P.; Zhu, J.; Liu, C.; Wang, X.; Kuang, Q.; Zheng, L. S. Formaldehyde-assisted synthesis of ultrathin Rh nanosheets for applications in CO oxidation. CrystEngComm 2013, 15, 6127–6130.CrossRefGoogle Scholar
  36. [36]
    Zhao, L.; Xu, C. F.; Su, H. F.; Liang, J. H.; Lin, S. C.; Gu, L.; Wang, X. L.; Chen, M.; Zheng, N. F. Single-crystalline rhodium nanosheets with atomic thickness. Adv. Sci. 2015, 2, 1500100.CrossRefGoogle Scholar
  37. [37]
    Jang, K.; Kim, H. J.; Son, S. U. Low-temperature synthesis of ultrathin rhodium nanoplates via molecular orbital symmetry interaction between rhodium precursors. Chem. Mater. 2010, 22, 1273–1275.CrossRefGoogle Scholar
  38. [38]
    Kibis, L. S.; Stadnichenko, A. I.; Koscheev, S. V.; Zaikovskii, V. I.; Boronin, A. I. XPS study of nanostructured rhodium oxide film comprising Rh4+ species. J. Phys. Chem. C 2016, 120, 19142–19150.CrossRefGoogle Scholar
  39. [39]
    Gayen, A.; Priolkar, K. R.; Sarode, P. R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S. Ce1–xRhxO2–δ solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater. 2004, 16, 2317–2328.CrossRefGoogle Scholar
  40. [40]
    Ni, P. J.; Dai, H. C.; Wang, Y. L.; Sun, Y. J.; Shi, Y.; Hu, J. T.; Li, Z. Visual detection of melamine based on the peroxidase-like activity enhancement of bare gold nanoparticles. Biosens Bioelectron. 2014, 60, 286–291.CrossRefGoogle Scholar
  41. [41]
    Chen, S.; Hai, X.; Chen, X. W.; Wang, J. H. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal. Chem. 2014, 86, 6689–6694.CrossRefGoogle Scholar
  42. [42]
    Fu, Y.; Zhang, H. X.; Dai, S. D.; Zhi, X.; Zhang, J. L.; Li, W. Glutathione-stabilized palladium nanozyme for colorimetric assay of silver(I) ions. Analyst 2015, 140, 6676–6683.CrossRefGoogle Scholar
  43. [43]
    Jin, L. H.; Meng, Z.; Zhang, Y. Q.; Cai, S. J.; Zhang, Z. H.; Li, C.; Shang, L.; Shen, Y. H. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 2017, 9, 10027–10033.CrossRefGoogle Scholar
  44. [44]
    Ye, H. H.; Mohar, J.; Wang, Q. X.; Catalano, M.; Kim, M. J.; Xia, X. H. Peroxidase-like properities of ruthenium nanoframes. Sci. Bull. 2016, 61, 1739–1745.CrossRefGoogle Scholar
  45. [45]
    Cui, M. L.; Zhou, J. D.; Zhao, Y.; Song, Q. J. Facile synthesis of iridium nanoparticles with superior peroxidase-like activity for colorimetric determination of H2O2 and xanthine. Sens. Actuators B 2017, 243, 203–210.CrossRefGoogle Scholar
  46. [46]
    Choleva, T. G.; Gatselou, V. A.; Tsogas, G. Z.; Giokas, D. L. Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchim. Acta 2018, 185, 22.CrossRefGoogle Scholar
  47. [47]
    Yuan, Y.; Yan, N.; Dyson, P. J. Advances in the rational design of rhodium nanoparticle catalysts: Control via manipulation of the nanoparticle core and stabilizer. ACS Catal. 2012, 2, 1057–1069.CrossRefGoogle Scholar
  48. [48]
    Shoba, V. M.; Takacs, J. M. Remarkably facile boranepromoted, rhodium-catalyzed asymmetric hydrogenation of tri-and tetrasubstituted alkenes. J. Am. Chem. Soc. 2017, 139, 5740–5743.CrossRefGoogle Scholar
  49. [49]
    Ren, X. Y.; Zhang, Z. Y.; Zhang, L.; Wang, Z.; Xia, C. G.; Ding, K. L. Rhodium complex catalyzed hydroformylation of olefins with CO2 and hydrosilane. Angew. Chem., Int. Ed. 2017, 56, 310–313.CrossRefGoogle Scholar
  50. [50]
    Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.CrossRefGoogle Scholar
  51. [51]
    Mu, J. S.; Wang, Y.; Zhao, M.; Zhang, L. Intrinsic peroxidaselike activity and catalase-like activity of Co3O4 nanoparticles. Chem. Commun. 2012, 48, 2540–2542.CrossRefGoogle Scholar
  52. [52]
    Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S.; Qu, X. G. Graphene oxide: Intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater. 2010, 22, 2206–2210.CrossRefGoogle Scholar
  53. [53]
    Ma, M.; Zhang, Y.; Gu, N. Peroxidase-like catalytic activity of cubic Pt nanocrystals. Colloid. Surface. A: Physicochem. Eng. Aspect. 2011, 373, 6–10.CrossRefGoogle Scholar
  54. [54]
    Tan, H. L.; Ma, C. J.; Gao, L.; Li, Q.; Song, Y. H.; Xu, F. G.; Wang, T.; Wang, L. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid. Chem.-Eur. J. 2014, 20, 16377–16383.CrossRefGoogle Scholar
  55. [55]
    Chen, Z. W.; Yin, J. J.; Zhou, Y. T.; Zhang, Y.; Song, L. N.; Song, M. J.; Hu, S. L.; Gu, N. Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 2012, 6, 4001–4012.CrossRefGoogle Scholar
  56. [56]
    Su, H.; Liu, D. D.; Zhao, M.; Hu, W. L.; Xue, S. S.; Cao, Q.; Le, X. Y.; Ji, L. N.; Mao, Z. W. Dual-enzyme characteristics of polyvinylpyrrolidone-capped iridium nanoparticles and their cellular protective effect against H2O2-induced oxidative damage. ACS Appl. Mater. Interfaces 2015, 7, 8233–8242.CrossRefGoogle Scholar
  57. [57]
    Deng, H. H.; Lin, X. L.; Liu, Y. H.; Li, K. L.; Zhang, Q. Q.; Peng, H. P.; Liu, A. L.; Xia, X. H.; Chen, W. Chitosanstabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale 2017, 9, 10292–10300.CrossRefGoogle Scholar
  58. [58]
    Zhang, J. W.; Zhang, H. T.; Du, Z. Y.; Wang, X. Q.; Yu, S. H.; Jiang, H. L. Water-stable metal-organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chem. Commun. 2014, 50, 1092–1094.CrossRefGoogle Scholar
  59. [59]
    Sun, H. F.; Chao, J.; Zuo, X. L.; Su, S.; Liu, X. F.; Yuwen, L. H.; Fan, C. H.; Wang, L. H. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2014, 4, 27625–27629.CrossRefGoogle Scholar
  60. [60]
    Zhou, C. L.; Li, S.; Zhu, W.; Pang, H. J.; Ma, H. Y. A sensor of a polyoxometalate and Au-Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim. Acta. 2013, 113, 454–463.CrossRefGoogle Scholar
  61. [61]
    Mi, C. C.; Wang, T. T.; Zeng, P.; Zhao, S.; Wang, N. Z.; Xu, S. K. Determination of ascorbic acid via luminescence quenching of LaF3:Ce, Tb nanoparticles synthesized through a microwave-assisted solvothermal method. Anal. Methods 2013, 5, 1463–1468.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  2. 2.Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUK
  3. 3.Department of ChemistryTsinghua UniversityBeijingChina

Personalised recommendations