Nano Research

, Volume 11, Issue 10, pp 5144–5172 | Cite as

Advances in nanomaterials for brain microscopy

  • Jackson T. Del Bonis-O’Donnell
  • Linda Chio
  • Gabriel F. Dorlhiac
  • Ian R. McFarlane
  • Markita P. LandryEmail author
Review Article


Microscopic imaging of the brain continues to reveal details of its structure, connectivity, and function. To further improve our understanding of the emergent properties and functions of neural circuits, we need to directly visualize the relationship between brain structure, neuron activity, and neurochemistry. Advances in the chemical and optical properties of nanomaterials, and developments in deep-tissue microscopy, may help to overcome the current challenges of in-vivo brain imaging, particularly when imaging the brain through optically-dense brain tissue, skull, and scalp. Developments in nanomaterials may enable the implementation of tunable chemical functionality for neurochemical targeting and sensing, and fluorescence stability for long-term imaging. In this review, we summarize the current methods used for brain microscopy and describe the diverse classes of nanomaterials recently offered as contrast agents and functional probes for microscopic optical imaging of the brain.


nanomaterials neuroscience imaging microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We acknowledge support of a Burroughs Wellcome Fund Career Award at the Scientific Interface (CASI), the Simons Foundation, a Stanley Fahn PDF Junior Faculty Grant with Award # PF-JFA-1760, a Beckman Foundation Young Investigator Award, a DARPA Young Faculty Award, and a FFAR New Innovator Award. M. P. L. is a Chan Zuckerberg Biohub investigator. J. T. D. O. is supported by the Department of Defense office of the Congressionally Directed Medical Research Programs (CDMRP) Parkinson’s Research Program (PRP) Early Investigator Award. L. C. is supported by National Defense Science and Engineering Graduate (NDSEG) Fellowship and by Lam Research. G. F. D. is partially supported by an NIH Ruth L. Kirschstein Institutional National Research Service Award (T32). Portions of the figures were adopted from Servier Medical Art by Servier ( and modified by the authors under the following terms: CREATIVE COMMONS Attribution 3.0 Unported (CC BY 3.0).


  1. [1]
    Kerr, J. N. D.; Denk, W. Imaging in vivo: Watching the brain in action. Nat. Rev. Neurosci. 2008, 9, 195–205.Google Scholar
  2. [2]
    Miller, E. W. Small molecule fluorescent voltage indicators for studying membrane potential. Curr. Opin. Chem. Biol. 2016, 33, 74–80.Google Scholar
  3. [3]
    Deo, C.; Lavis, L. D. Synthetic and genetically encoded fluorescent neural activity indicators. Curr. Opin. Neurobiol. 2018, 50, 101–108.Google Scholar
  4. [4]
    Patriarchi, T.; Cho, J. R.; Merten, K.; Howe, M. W.; Marley, A.; Xiong, W.–H.; Folk, R. W.; Broussard, G. J.; Liang, R. Q.; Jang M. J. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 2018, eaat4422.Google Scholar
  5. [5]
    Sun, F. M.; Zeng, J. Z.; Jing, M.; Zhou, J. H.; Feng, J. S.; Owen, S. F.; Luo, Y. C.; Li, F. N.; Yamaguchi, T.; Yong, Z. H. et al. A genetically–encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. bioRxiv 2018, DOI: 10.1101/332528.Google Scholar
  6. [6]
    Kumar, A.; Tan, A. R.; Wong, J.; Spagnoli, J. C.; Lam, J.; Blevins, B. D.; Natasha, G.; Thorne, L.; Ashkan, K.; Xie, J. et al. Nanotechnology for neuroscience: Promising approaches for diagnostics, therapeutics and brain activity mapping. Adv. Funct. Mater. 2017, 27, 1700489.Google Scholar
  7. [7]
    Alivisatos, A. P.; Andrews, A. M.; Boyden, E. S.; Chun, M.; Church, G. M.; Deisseroth, K.; Donoghue, J. P.; Fraser, S. E.; Lippincott–Schwartz, J.; Looger, L. L. et al. Nanotools for neuroscience and brain activity mapping. ACS Nano 2013, 7, 1850–1866.Google Scholar
  8. [8]
    Göppert–Mayer, M. Über elementarakte mit zwei quantensprüngen. Ann. Phys. 1931, 401, 273–294.Google Scholar
  9. [9]
    Kaiser, W.; Garrett, C. G. B. Two–photon excitation in CaF2: Eu2+. Phys. Rev. Lett. 1961, 7, 229–231.Google Scholar
  10. [10]
    Denk, W.; Strickler, J. H.; Webb, W. W. Two–photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76.Google Scholar
  11. [11]
    Lakowicz, J. R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer–Verlag US: USA, 2006.Google Scholar
  12. [12]
    Lefort, C. A review of biomedical multiphoton microscopy and its laser sources. J. Phys. D: Appl. Phys. 2017, 50, 423001.Google Scholar
  13. [13]
    Sinefeld, D.; Paudel, H. P.; Ouzounov, D. G.; Bifano, T. G.; Xu, C. Adaptive optics in multiphoton microscopy: Comparison of two, three and four photon fluorescence. Opt. Express 2015, 23, 31472–31483.Google Scholar
  14. [14]
    Sorbello, C.; Etchenique, R. Poor man’s two photon imaging: Scanning laser upconversion microscopy. bioRxiv 2017, DOI: 10.1101/138909.Google Scholar
  15. [15]
    Danné, N.; Godin, A. G.; Gao, Z. H.; Varela, J. A.; Groc, L.; Lounis, B.; Cognet, L. Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications. ACS Photonics 2018, 5, 359–364.Google Scholar
  16. [16]
    Wang, P. Y.; Wang, C. L.; Lu, L. F.; Li, X. M.; Wang, W. X.; Zhao, M. Y.; Hu, L. D.; El–Toni, A. M.; Li, Q.; Zhang, F. Kinetics–mediate fabrication of multi–model bioimaging lanthanide nanoplates with controllable surface roughness for blood brain barrier transportation. Biomaterials 2017, 141, 223–232.Google Scholar
  17. [17]
    Helmchen, F.; Denk, W. Deep tissue two–photon microscopy. Nat. Methods 2005, 2, 932–940.Google Scholar
  18. [18]
    Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.Google Scholar
  19. [19]
    Li, S. H.; Johnson, J.; Peck, A.; Xie, Q. Near infrared fluorescent imaging of brain tumor with IR780 dye incorporated phospholipid nanoparticles. J. Transl. Med. 2017, 15, 18.Google Scholar
  20. [20]
    Varela, J. A.; Dupuis, J. P.; Etchepare, L.; Espana, A.; Cognet, L.; Groc, L. Targeting neurotransmitter receptors with nanoparticles in vivo allows single–molecule tracking in acute brain slices. Nat. Commun. 2016, 7, 20947.Google Scholar
  21. [21]
    Agarwal, R.; Domowicz, M. S.; Schwartz, N. B.; Henry, J.; Medintz, I.; Delehanty, J. B.; Stewart, M. H.; Susumu, K.; Huston, A. L.; Deschamps, J. R. et al. Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain. ACS Chem. Neurosci. 2015, 6, 494–504.Google Scholar
  22. [22]
    Huang, N.; Cheng, S.; Zhang, X.; Tian, Q.; Pi, J. L.; Tang, J.; Huang, Q.; Wang, F.; Chen, J.; Xie, Z. Y. et al. Efficacy of NGR peptide–modified PEGylated quantum dots for crossing the blood–brain barrier and targeted fluorescence imaging of glioma and tumor vasculature. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 83–93.Google Scholar
  23. [23]
    Yang, H. Y.; Fu, Y.; Jang, M. S.; Li, Y.; Yin, W. P.; Ahn, T. K.; Lee, J. H.; Chae, H.; Lee, D. S. CdSe@ZnS/ZnS quantum dots loaded in polymeric micelles as a pHtriggerable targeting fluorescence imaging probe for detecting cerebral ischemic area. Colloids Surfaces B Biointerfaces 2017, 155, 497–506.Google Scholar
  24. [24]
    Gupta, A.; Nandi, C. K. PC12 live cell ultrasensitive neurotransmitter signaling using high quantum yield sulphur doped carbon dots and its extracellular Ca2+ ion dependence. Sensors Actuators B Chem. 2017, 245, 137–145.Google Scholar
  25. [25]
    Romero, G.; Christiansen, M. G.; Stocche Barbosa, L.; Garcia, F.; Anikeeva, P. Localized excitation of neural activity via rapid magnetothermal drug release. Adv. Funct. Mater. 2016, 26, 6471–6478.Google Scholar
  26. [26]
    Ruan, S. B.; Hu, C.; Tang, X.; Cun, X. L.; Xiao, W.; Shi, K. R.; He, Q.; Gao, H. L. Increased gold nanoparticle retention in brain tumors by in situ enzyme–induced aggregation. ACS Nano 2016, 10, 10086–10098.Google Scholar
  27. [27]
    Tamborini, M.; Locatelli, E.; Rasile, M.; Monaco, I.; Rodighiero, S.; Corradini, I.; Comes Franchini, M.; Passoni, L.; Matteoli, M. A combined approach employing chlorotoxinnanovectors and low dose radiation to reach infiltrating tumor niches in glioblastoma. ACS Nano 2016, 10, 2509–2520.Google Scholar
  28. [28]
    Qian, C. G.; Zhu, S.; Feng, P. J.; Chen, Y. L.; Yu, J. C.; Tang, X.; Liu, Y.; Shen, Q. D. Conjugated polymer nanoparticles for fluorescence imaging and sensing of neurotransmitter dopamine in living cells and the brains of zebrafish larvae. ACS Appl. Mater. Interfaces 2015, 7, 18581–18589.Google Scholar
  29. [29]
    Kobat, D.; Durst, M. E.; Nishimura, N.; Wong, A. W.; Schaffer, C. B.; Xu, C. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 2009, 17, 13354–13364.Google Scholar
  30. [30]
    Podgorski, K.; Ranganathan, G. Methods to understand brain connections and neural function: Brain heating induced by near–infrared lasers during multiphoton microscopy. J. Neurophysiol. 2018, 116, 1012–1023.Google Scholar
  31. [31]
    Horton, N. G.; Wang, K.; Kobat, D.; Clark, C. G.; Wise, F. W.; Schaffer, C. B.; Xu, C. In vivo three–photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 2013, 7, 205–209.Google Scholar
  32. [32]
    Del Bonis–O’Donnell, J. T.; Page, R. H.; Beyene, A. G.; Tindall, E. G.; McFarlane, I. R.; Landry, M. P. Dual nearinfrared two–photon microscopy for deep–tissue dopamine nanosensor imaging. Adv. Funct. Mater. 2017, 27, 1702112.Google Scholar
  33. [33]
    Wang, J. T. W.; Rubio, N.; Kafa, H.; Venturelli, E.; Fabbro, C.; Ménard–Moyon, C.; Da Ros, T.; Sosabowski, J. K.; Lawson, A. D.; Robinson, M. K. et al. Kinetics of functionalised carbon nanotube distribution in mouse brain after systemic injection: Spatial to ultra–structural analyses. J. Control. Release 2016, 224, 22–32.Google Scholar
  34. [34]
    Lamy, C. M.; Sallin, O.; Loussert, C.; Chatton, J. Y. Sodium sensing in neurons with a dendrimer–based nanoprobe. ACS Nano 2012, 6, 1176–1187.Google Scholar
  35. [35]
    Urban, B. E.; Xiao, L.; Dong, B. Q.; Chen, S. Y.; Kozorovitskiy, Y.; Zhang, H. F. Imaging neuronal structure dynamics using 2–photon super–resolution patterned excitation reconstruction microscopy. J. Biophotonics 2018, 11, e201700171.Google Scholar
  36. [36]
    Rowlands, C. J.; Park, D.; Bruns, O. T.; Piatkevich, K. D.; Fukumura, D.; Jain, R. K.; Bawendi, M. G.; Boyden, E. S.; So, P. T. C. Wide–field three–photon excitation in biological samples. Light Sci. Appl. 2017, 6, e16255.Google Scholar
  37. [37]
    Wang, S. W.; Xi, W.; Cai, F. H.; Zhao, X. Y.; Xu, Z. P.; Qian, J.; He, S. L. Three–photon luminescence of gold nanorods and its applications for high contrast tissue and deep in vivo brain imaging. Theranostics 2015, 5, 251–266.Google Scholar
  38. [38]
    Alifu, N.; Yan, L. L.; Zhang, H. Q.; Zebibula, A.; Zhu, Z. G.; Xi, W.; Roe, A. W.; Xu, B.; Tian, W. J.; Qian, J. Organic dye doped nanoparticles with nir emission and biocompatibility for ultra–deep in vivo two–photon microscopy under 1040 nm femtosecond excitation. Dye. Pigment. 2017, 143, 76–85.Google Scholar
  39. [39]
    Qian, J.; Zhu, Z. F.; Qin, A. J.; Qin, W.; Chu, L. L.; Cai, F. H.; Zhang, H. Q.; Wu, Q.; Hu, R. R.; Tang, B. Z. et al. High–order non–linear optical effects in organic luminogens with aggregation–induced emission. Adv. Mater. 2015, 27, 2332–2339.Google Scholar
  40. [40]
    Greger, K.; Swoger, J.; Stelzer, E. H. K. Basic building units and properties of a fluorescence single plane illumination microscope. Rev. Sci. Instrum. 2007, 78, 023705.Google Scholar
  41. [41]
    Power, R. M.; Huisken, J. A guide to light–sheet fluorescence microscopy for multiscale imaging. Nat. Methods 2017, 14, 360–373.Google Scholar
  42. [42]
    Chen, B.–C.; Legant, W. R.; Wang, K.; Shao, L.; Milkie, D. E.; Davidson, M. W.; Janetopoulos, C.; Wu, X. S.; Hammer, J. A.; Liu, Z. et al. Lattice light–sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science 2014, 346, 1257998.Google Scholar
  43. [43]
    Wolf, S.; Supatto, W.; Debrégeas, G.; Mahou, P.; Kruglik, S. G.; Sintes, J.–M.; Beaurepaire, E.; Candelier, R. Wholebrain functional imaging with two–photon light–sheet microscopy. Nat. Methods 2015, 12, 379–380.Google Scholar
  44. [44]
    Tomer, R.; Ye, L.; Hsueh, B.; Deisseroth, K. Advanced CLARITY for rapid and high–resolution imaging of intact tissues. Nat. Protoc. 2014, 9, 1682–1697.Google Scholar
  45. [45]
    Stefaniuk, M.; Gualda, E. J.; Pawlowska, M.; Legutko, D.; Matryba, P.; Koza, P.; Konopka, W.; Owczarek, D.; Wawrzyniak, M.; Loza–Alvarez P, et al. Light–sheet microscopy imaging of a whole cleared rat brain with thy1–GFP transgene. Sci. Rep. 2016, 6, 28209.Google Scholar
  46. [46]
    Wang, K.; Sun, W. Z.; Ji, N.; Betzig, E. In vivo brain imaging with adaptive optical microscope. In 2016 Conference on Lasers and Electro–Optics (CLEO), San Jose, California, USA, 2016.Google Scholar
  47. [47]
    Tao, X.; Lin, H.; Lam, T.; Rodriguez, R.; Wang, J. W.; Kubby, J. Transcutical three–photon fluorescence imaging of drosophila brain at subcellular resolution with adaptive optics. In Conference on Lasers and Electro–Optics, San Jose, California, USA, 2017, pp 2–3.Google Scholar
  48. [48]
    Chung, K.; Wallace, J.; Kim, S. Y.; Kalyanasundaram, S.; Andalman, A. S.; Davidson, T. J.; Mirzabekov, J. J.; Zalocusky, K. A.; Mattis, J.; Denisin, A. et al. Structural and molecular interrogation of intact biological systems. Nature 2013, 497, 332–337.Google Scholar
  49. [49]
    Chung, K.; Deisseroth, K. CLARITY for mapping the nervous system. Nat. Methods 2013, 10, 508–513.Google Scholar
  50. [50]
    Menegas, W.; Bergan, J. F.; Ogawa, S. K.; Isogai, Y.; Venkataraju, K. U.; Osten, P.; Uchida, N.; Watabe–Uchida, M. Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 2015, 4, e10032.Google Scholar
  51. [51]
    Ye, L.; Allen, W. E.; Thompson, K. R.; Tian, Q. Y.; Hsueh, B.; Ramakrishnan, C.; Wang, A. C.; Jennings, J. H.; Adhikari, A.; Halpem, C. H. et al. Wiring and molecular features of prefrontal ensembles representing distinct experiences. Cell 2016, 165, 1776–1788.Google Scholar
  52. [52]
    Chen, F.; Tillberg, P. W.; Boyden, E. S. Expansion microscopy. Science 2015, 347, 543–548.Google Scholar
  53. [53]
    Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature 1985, 318, 162–163.Google Scholar
  54. [54]
    Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.Google Scholar
  55. [55]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S.V; Grigorieva, I. V; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.Google Scholar
  56. [56]
    Hirsch, A. The era of carbon allotropes. Nat. Mater. 2010, 9, 868–871.Google Scholar
  57. [57]
    Georgakilas, V.; Perman, J. A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822.Google Scholar
  58. [58]
    Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.Google Scholar
  59. [59]
    Teradal, N. L.; Jelinek, R. Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater. 2017, 6, 1700574.Google Scholar
  60. [60]
    Dai, L. M.; Chang, D. W.; Baek, J.–B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130–1166.Google Scholar
  61. [61]
    Mauter, M. S.; Elimelech, M. Environmental applications of carbon–based nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859.Google Scholar
  62. [62]
    O’Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C. et al. Band gap fluorescence from individual single–walled carbon nanotubes. Science 2002, 297, 593–596.Google Scholar
  63. [63]
    Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, M. H. Hydrothermal route for cutting graphene sheets into blue–luminescent graphene quantum dots. Adv. Mater. 2010, 22, 734–738.Google Scholar
  64. [64]
    Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano–graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.Google Scholar
  65. [65]
    Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Karakassides, M.; Giannelis, E. P. Surface functionalized carbogenic quantum dots. Small 2008, 4, 455–458.Google Scholar
  66. [66]
    Kruss, S.; Hilmer, A. J.; Zhang, J. Q.; Reuel, N. F.; Mu, B.; Strano, M. S. Carbon nanotubes as optical biomedical sensors. Adv. Drug Deliv. Rev. 2013, 65, 1933–1950.Google Scholar
  67. [67]
    Zhang, J. Q.; Landry, M. P.; Barone, P. W.; Kim, J. H.; Lin, S. C.; Ulissi, Z. W.; Lin, D. H.; Mu, B.; Boghossian, A. A.; Hilmer, A. J. et al. Molecular recognition using corona phase complexes made of synthetic polymers adsorbed on carbon nanotubes. Nat. Nanotechnol. 2013, 8, 959–968.Google Scholar
  68. [68]
    Li, L. L.; Wu, G. H.; Yang, G. H.; Peng, J.; Zhao, J. W.; Zhu, J.–J. Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 2013, 5, 4015–4039.Google Scholar
  69. [69]
    Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816–10906.Google Scholar
  70. [70]
    Kafa, H.; Wang, J. T. W.; Al–Jamal, K. T. Current perspective of carbon nanotubes application in neurology. Int. Rev. Neurobiol. 2016, 130, 229–263.Google Scholar
  71. [71]
    Hillman, E. M. C. Optical brain imaging in vivo: Techniques and applications from animal to man. J. Biomed. Opt. 2007, 12, 051402.Google Scholar
  72. [72]
    Dunn, A. K.; Wallace, V. P.; Coleno, M.; Berns, M. W.; Tromberg, B. J. Influence of optical properties on two–photon fluorescence imaging in turbid samples. Appl. Opt. 2000, 39, 1194–1201.Google Scholar
  73. [73]
    Welsher, K.; Sherlock, S. P.; Dai, H. Deep–tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near–infrared window. Proc. Natl. Acad. Sci. USA 2011, 108, 8943–8948.Google Scholar
  74. [74]
    Heller, D. A.; Baik, S.; Eurell, T. E.; Strano, M. S. Singlewalled carbon nanotube spectroscopy in live cells: Towards long–term labels and optical sensors. Adv. Mater. 2005, 17, 2793–2799.Google Scholar
  75. [75]
    Leeuw, T. K.; Michelle Reith, R.; Simonette, R. A.; Harden, M. E.; Cherukuri, P.; Tsyboulski, D. A.; Beckingham, K. M.; Weisman, R. B. Single–walled carbon nanotubes in the intact organism: Near–IR imaging and biocompatibility studies in drosophila. Nano Lett. 2007, 7, 2650–2654.Google Scholar
  76. [76]
    Hong, G. S.; Diao, S.; Chang, J. L.; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, P. L. et al. Through–skull fluorescence imaging of the brain in a new near–infrared window. Nat. Photonics 2014, 8, 723–730.Google Scholar
  77. [77]
    Holtmaat, A.; Bonhoeffer, T.; Chow, D. K.; Chuckowree, J.; De Paola, V.; Hofer, S. B.; Hübener, M.; Keck, T.; Knott, G.; Lee, W. C. A. et al. Long–term, high–resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 2009, 4, 1128–1144.Google Scholar
  78. [78]
    Godin, A. G.; Varela, J. A.; Gao, Z. H.; Danné, N.; Dupuis, J. P.; Lounis, B.; Groc, L.; Cognet, L. Single–nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. Nat. Nanotechnol. 2017, 12, 238–243.Google Scholar
  79. [79]
    Syková, E.; Nicholson, C. Diffusion in brain extracellular space. Physiol. Rev. 2008, 88, 1277–1340.Google Scholar
  80. [80]
    Vorisek, I.; Sykova, E. Measuring diffusion parameters in the brain: Comparing the real–time iontophoretic method and diffusion–weighted magnetic resonance. Acta Physiol. 2009, 195, 101–110.Google Scholar
  81. [81]
    Vargová, L.; Syková, E. Astrocytes and extracellular matrix in extrasynaptic volume transmission. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014, 369, 20130608.Google Scholar
  82. [82]
    Budhathoki–Uprety, J.; Harvey, J. D.; Isaac, E.; Williams, R. M.; Galassi, T. V.; Langenbacher, R. E.; Heller, D. A. Polymer cloaking modulates the carbon nanotube protein corona and delivery into cancer cells. J. Mater. Chem. B 2017, 5, 6637–6644.Google Scholar
  83. [83]
    Demirer, G. S.; Zhang, H.; Matos, J.; Chang, R.; Chio, L.; Staskawicz, B.; Landry, M. P. High aspect ratio nanomaterials enable biomolecule delivery and transgene expression or silencing in mature plants. bioRxiv 2018, DOI: 10.1101/179549.Google Scholar
  84. [84]
    Hong, G. S.; Wu, J. Z.; Robinson, J. T.; Wang, H. L.; Zhang, B.; Dai, H. J. Three–dimensional imaging of single nanotube molecule endocytosis on plasmonic substrates. Nat. Commun. 2012, 3, 700.Google Scholar
  85. [85]
    Kraszewski, S.; Bianco, A.; Tarek, M.; Ramseyer, C. Insertion of short amino–functionalized single–walled carbon nanotubes into phospholipid bilayer occurs by passive diffusion. PLoS One 2012, 7, e40703.Google Scholar
  86. [86]
    Bussy, C.; Al–Jamal, K. T.; Boczkowski, J.; Lanone, S.; Prato, M.; Bianco, A.; Kostarelos, K. Microglia determine brain region–specific neurotoxic responses to chemically functionalized carbon nanotubes. ACS Nano 2015, 9, 7815–7830.Google Scholar
  87. [87]
    Ernst, F.; Gao, Z. H.; Arenal, R.; Heek, T.; Setaro, A.; Fernandez–Pacheco, R.; Haag, R.; Cognet, L.; Reich, S. Noncovalent Stable functionalization makes carbon nanotubes hydrophilic and biocompatible. J. Phys. Chem. C 2017, 121, 18887–18891.Google Scholar
  88. [88]
    Landry, M. P.; Ando, H.; Chen, A. Y.; Cao, J. C.; Kottadiel, V. I.; Chio, L.; Yang, D. W.; Dong, J. Y.; Lu, T. K.; Strano, M. S. Single–molecule detection of protein efflux from microorganisms using fluorescent single–walled carbon nanotube sensor arrays. Nat. Nanotechnol. 2017, 12, 368–377.Google Scholar
  89. [89]
    Bisker, G.; Dong, J. Y.; Park, H. D.; Iverson, N. M.; Ahn, J.; Nelson, J. T.; Landry, M. P.; Kruss, S.; Strano, M. S. Protein–targeted corona phase molecular recognition. Nat. Commun. 2016, 7, 10241.Google Scholar
  90. [90]
    Chio, L.; Yang, D.; Landry, M. Surface engineering of nanoparticles to create synthetic antibodies. In Synthetic Antibodies: Methods and Protocols; Tiller, T., Ed.; Springer New York: New York, 2017; pp 363–380.Google Scholar
  91. [91]
    Beyene, A. G.; Demirer, G. S.; Landry, M. P. Nanoparticletemplated molecular recognition platforms for detection of biological analytes. Curr. Protoc. Chem. Biol. 2016, 8 197–223.Google Scholar
  92. [92]
    Kruss, S.; Landry, M. P.; Vander Ende, E.; Lima, B. M. A.; Reuel, N. F.; Zhang, J. Q.; Nelson, J.; Mu, B.; Hilmer, A.; Strano, M. Neurotransmitter detection using corona phase molecular recognition on fluorescent single–walled carbon nanotube sensors. J. Am. Chem. Soc. 2014, 136, 713–724.Google Scholar
  93. [93]
    Mann, F.; Herrmann, N.; Meyer, D.; Kruss, S. Tuning selectivity of fluorescent carbon nanotube–based neurotransmitter sensors. Sensors 2017, 17, 1521.Google Scholar
  94. [94]
    Kruss, S.; Salem, D. P.; Vuković, L.; Lima, B.; Vander Ende, E.; Boyden, E. S.; Strano, M. S. High–resolution imaging of cellular dopamine efflux using a fluorescent nanosensor array. Proc. Natl. Acad. Sci. USA 2017, 114, 1789–1794.Google Scholar
  95. [95]
    Beyene, A. G.; Alizadehmojarad, A. A.; Dorlhiac, G.; Streets, A. M.; Kral, P.; Vuković, L.; Landry, M. P. Ultralarge modulation of single wall carbon nanotube fluorescence mediated by neuromodulators adsorbed on arrays of oligonucleotide rings. bioRxiv 2018, DOI: 10.1101/351627.Google Scholar
  96. [96]
    Beyene, A. G.; Delevich, K.; Del Bonis–O’Donnell, J. T.; Piekarski, D. J.; Lin, W. C.; Thomas, A. W.; Yang, S. J.; Kosillo, P.; Yang, D.; Wilbrecht, L. et al. Imaging striatal dopamine release using a non–genetically encoded nearinfrared fluorescent catecholamine nanosensor. bioRxiv 2018, DOI: 10.1101/356543.Google Scholar
  97. [97]
    Beyene, A. G.; McFarlane, I. R.; Pinals, R. L.; Landry, M. P. Stochastic simulation of dopamine neuromodulation for implementation of fluorescent neurochemical probes in the striatal extracellular space. ACS Chem. Neurosci. 2017, 8, 2275–2289.Google Scholar
  98. [98]
    Meyer, D.; Hagemann, A.; Kruss, S. Kinetic requirements for spatiotemporal chemical imaging with fluorescent nanosensors. ACS Nano 2017, 11, 4017–4027.Google Scholar
  99. [99]
    Kafa, H.; Wang, J. T. W.; Rubio, N.; Venner, K.; Anderson, G.; Pach, E.; Ballesteros, B.; Preston, J. E.; Abbott, N. J.; Al–Jamal, K. T. The interaction of carbon nanotubes with an in vitro blood–brain barrier model and mouse brain in vivo. Biomaterials 2015, 53, 437–452.Google Scholar
  100. [100]
    Shityakov, S.; Salvador, E.; Pastorin, G.; Förster, C. Blood–brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate. Int. J. Nanomedicine 2015, 10, 1703–1713.Google Scholar
  101. [101]
    Rubio, N.; Hirvonen, L. M.; Chong, E. Z.; Wang, J. T. W.; Bourgognon, M.; Kafa, H.; Hassan, H. A. F. M.; Al–Jamal, W. T.; McCarthy, D.; Hogstrand, C. et al. Multiphoton luminescence imaging of chemically functionalized multiwalled carbon nanotubes in cells and solid tumors. Chem. Commun. 2015, 51, 9366–9369.Google Scholar
  102. [102]
    Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y.–P. Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 2013, 46, 171–180.Google Scholar
  103. [103]
    Miao, P.; Han, K.; Tang, Y. G.; Wang, B. D.; Lin, T.; Cheng, W. B. Recent advances in carbon nanodots: Synthesis, properties and biomedical applications. Nanoscale 2015, 7, 1586–1595.Google Scholar
  104. [104]
    Qian, J.; Wang, D.; Cai, F.–H.; Xi, W.; Peng, L.; Zhu, Z.–F.; He, H.; Hu, M.–L.; He, S. L. Observation of multiphotoninduced fluorescence from graphene oxide nanoparticles and applications in in vivo functional bioimaging. Angew. Chem., Int. Ed. 2012, 51, 10570–10575.Google Scholar
  105. [105]
    Rauti, R.; Lozano, N.; León, V.; Scaini, D.; Musto, M.; Rago, I.; Ulloa Severino, F. P.; Fabbro, A.; Casalis, L.; Vázquez, E. et al. Graphene oxide nanosheets reshape synaptic function in cultured brain networks. ACS Nano 2016, 10, 4459–4471.Google Scholar
  106. [106]
    Lin, Y. Q.; Wang, C.; Li, L. B.; Wang, H.; Liu, K. Y.; Wang, K. Q.; Li, B. Tunable fluorescent silica–coated carbon dots: A synergistic effect for enhancing the fluorescence sensing of extracellular Cu2+ in rat brain. ACS Appl. Mater. Interfaces 2015, 7, 27262–27270.Google Scholar
  107. [107]
    Baluta, S.; Cabaj, J.; Malecha, K. Neurotransmitters detection using a fluorescence–based sensor with graphene quantum dots. Opt. Appl. 2017, 47, 225–231.Google Scholar
  108. [108]
    Mochalin, V. N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23.Google Scholar
  109. [109]
    Haziza, S.; Mohan, N.; Loe–Mie, Y.; Lepagnol–Bestel, A.–M.; Massou, S.; Adam, M.–P.; Le, X. L.; Viard, J.; Plancon, C.; Daudin, R. et al. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain–disease–related genetic risk factors. Nat. Nanotechnol. 2017, 12, 322–328.Google Scholar
  110. [110]
    Simpson, D. A.; Morrisroe, E.; McCoey, J. M.; Lombard, A. H.; Mendis, D. C.; Treussart, F.; Hall, L. T.; Petrou, S.; Hollenberg, L. C. L. Non–neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano 2017, 11, 12077–12086.Google Scholar
  111. [111]
    Hall, L. T.; Beart, G. C. G.; Thomas, E. A.; Simpson, D. A.; McGuinness, L. P.; Cole, J. H.; Manton, J. H.; Scholten, R. E.; Jelezko, F.; Wrachtrup, J. et al. High spatial and temporal resolution wide–field imaging of neuron activity using quantum NV–diamond. Sci. Rep. 2012, 2, 401.Google Scholar
  112. [112]
    Zhang, H. L.; Aharonovich, I.; Glenn, D. R.; Schalek, R.; Magyar, A. P.; Lichtman, J. W.; Hu, E. L.; Walsworth, R. L. Silicon–vacancy color centers in nanodiamonds: Cathodoluminescence imaging markers in the near infrared. Small 2014, 10, 1908–1913.Google Scholar
  113. [113]
    Freestone, I.; Meeks, N.; Sax, M.; Higgitt, C. The lycurgus cup–a roman nanotechnology. Gold Bull. 2007, 40, 270–277.Google Scholar
  114. [114]
    Reed, M. A.; Bate, R. T.; Bradshaw, K.; Duncan, W. M.; Frensley, W. R.; Lee, J. W.; Shih, H. D. Spatial quantization in GaAs–AlGaAs multiple quantum dots. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 1986, 4, 358.Google Scholar
  115. [115]
    Pinaud, F.; Michalet, X.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Iyer, G.; Weiss, S. Advances in fluorescence imaging with quantum dot bio–probes. Biomaterials 2006, 27, 1679–1687.Google Scholar
  116. [116]
    Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.Google Scholar
  117. [117]
    Lim, Y. T.; Kim, S.; Nakayama, A.; Stott, N. E.; Bawendi, M. G.; Frangioni, J. V. Selection of quantum dot wavelengths for biomedical assays and imaging. Mol. Imaging 2003, 2, 50–64.Google Scholar
  118. [118]
    Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.Google Scholar
  119. [119]
    Smith, A.; Gao, X. H.; Nie, S. M. Quantum dot nanocrystals for in vivo molecular and cellular imaging? Photochem. Photobiol. 2004, 80, 377–385.Google Scholar
  120. [120]
    Walther, C.; Meyer, K.; Rennert, R.; Neundorf, I. Quantum dot–carrier peptide conjugates suitable for imaging and delivery applications. Bioconjugate Chem. 2008, 19, 2346–2356.Google Scholar
  121. [121]
    Zrazhevskiy, P.; Gao, X. H. Quantum dot imaging platform for single–cell molecular profiling. Nat. Commun. 2013, 4, 1619.Google Scholar
  122. [122]
    Imamura, Y.; Yamada, S.; Tsuboi, S.; Nakane, Y.; Tsukasaki, Y.; Komatsuzaki, A.; Jin, T. Near–infrared emitting PbS quantum dots for in vivo fluorescence imaging of the thrombotic state in septic mouse brain. Molecules 2016, 21, 1080.Google Scholar
  123. [123]
    Dong, B. H.; Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Zhang, Y.; Deng, M. J.; Wang, Q. B. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near–infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503–2509.Google Scholar
  124. [124]
    Tang, R.; Xue, J. P.; Xu, B. G.; Shen, D. W.; Sudlow, G. P.; Achilefu, S. Tunable ultrasmall visible–to–extended near–infrared emitting silver sulfide quantum dots for integrin–targeted cancer imaging. ACS Nano 2015, 9, 220–230.Google Scholar
  125. [125]
    Franke, D.; Harris, D. K.; Chen, O.; Bruns, O. T.; Carr, J. A.; Wilson, M. W. B.; Bawendi, M. G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short–wavelength infrared. Nat. Commun. 2016, 7, 12749.Google Scholar
  126. [126]
    Bruns, O. T.; Bischof, T. S.; Harris, D. K.; Franke, D.; Shi, Y. X.; Riedemann, L.; Bartelt, A.; Jaworski, F. B.; Carr, J. A.; Rowlands, C. J. et al. Next–generation in vivo optical imaging with short–wave infrared quantum dots. Nat. Biomed. Eng. 2017, 1, 0056.Google Scholar
  127. [127]
    Carboni, E. J.; Bognet, B. H.; Bouchillon, G. M.; Kadilak, A. L.; Shor, L. M.; Ward, M. D.; Ma, A. W. K. Direct tracking of particles and quantification of margination in blood flow. Biophys. J. 2016, 111, 1487–1495.Google Scholar
  128. [128]
    Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle–mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016, 235, 34–47.Google Scholar
  129. [129]
    Thorne, R. G.; Nicholson, C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc. Natl. Acad. Sci. USA 2006, 103, 5567–5572.Google Scholar
  130. [130]
    Maeda, H. The enhanced permeability and retention (EPR) effect in tumor vasculature: The key role of tumor–selective macromolecular drug targeting. Adv. Enzyme Regul. 2001, 41, 189–207.Google Scholar
  131. [131]
    Gao, X. L.; Chen, J.; Chen, J. Y.; Wu, B. X.; Chen, H. Z.; Jiang, X. G. Quantum dots bearing lectin–functionalized nanoparticles as a platform for in vivo brain imaging. Bioconjugute Chem. 2008, 19, 2189–2195.Google Scholar
  132. [132]
    Dante, S.; Petrelli, A.; Petrini, E. M.; Marotta, R.; Maccione, A.; Alabastri, A.; Quarta, A.; De Donato, F.; Ravasenga, T.; Sathya, A. et al. Selective targeting of neurons with inorganic nanoparticles: Revealing the crucial role of nanoparticle surface Charge. ACS Nano 2017, 11, 6630–6640.Google Scholar
  133. [133]
    Walters, R.; Medintz, I. L.; Delehanty, J. B.; Stewart, M. H.; Susumu, K.; Huston, A. L.; Dawson, P. E.; Dawson, G. The role of negative charge in the delivery of quantum dots to neurons. ASN Neuro 2015, 7, 1759091415592389.Google Scholar
  134. [134]
    Minami, S. S.; Sun, B. G.; Popat, K.; Kauppinen, T.; Pleiss, M.; Zhou, Y. G.; Ward, M. E.; Floreancig, P.; Mucke, L.; Desai, T. et al. Selective targeting of microglia by quantum dots. J. Neuroinflammation 2012, 9, 22.Google Scholar
  135. [135]
    Maysinger, D.; Behrendt, M.; Lalancette–Hébert, M.; Kriz, J. Real–time imaging of astrocyte response to quantum dots: In vivo screening model system for biocompatibility of nanoparticles. Nano Lett. 2007, 7, 2513–2520.Google Scholar
  136. [136]
    Neuwelt, E. A.; Maravilla, K. R.; Frenkel, E. P.; Rapaport, S. I.; Hill, S. A.; Barnett, P. A. Osmotic blood–brain barrier disruption. Computerized tomographic monitoring of chemotherapeutic agent delivery. J. Clin. Invest. 1979, 64, 684–688.Google Scholar
  137. [137]
    Pardridge, W. M. Blood–brain barrier delivery. Drug Discov. Today 2007, 12, 54–61.Google Scholar
  138. [138]
    Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water–soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434–1436.Google Scholar
  139. [139]
    Cai, E.; Ge, P. H.; Lee, S. H.; Jeyifous, O.; Wang, Y.; Liu, Y. X.; Wilson, K. M.; Lim, S. J.; Baird, M. A.; Stone, J. E. et al. Stable small quantum dots for synaptic receptor tracking on live neurons. Angew. Chem., Int. Ed. 2014, 53, 12484–12488.Google Scholar
  140. [140]
    Triller, A.; Choquet, D. New concepts in synaptic biology derived from single–molecule imaging. Neuron 2008, 59, 359–374.Google Scholar
  141. [141]
    Pinaud, F.; Clarke, S.; Sittner, A.; Dahan, M. Probing cellular events, one quantum dot at a time. Nat. Methods 2010, 7, 275–285.Google Scholar
  142. [142]
    Zhang, Q.; Li, Y.; Tsien, R. W. The dynamic control of kiss–and–run and vesicular reuse probed with single nanoparticles. Science 2009, 323, 1448–1453.Google Scholar
  143. [143]
    Rowland, C. E.; Susumu, K.; Stewart, M. H.; Oh, E.; Mäkinen, A. J.; O’Shaughnessy, T. J.; Kushto, G.; Wolak, M. A.; Erickson, J. S.; Efros, A. et al. Electric field modulation of semiconductor quantum dot photoluminescence: Insights into the design of robust voltage–sensitive cellular imaging probes. Nano Lett. 2015, 15, 6848–6854.Google Scholar
  144. [144]
    Marshall, J. D.; Schnitzer, M. J. Optical strategies for sensing neuronal voltage using quantum dots and other semiconductor nanocrystals. ACS Nano 2013, 7, 4601–4609.Google Scholar
  145. [145]
    Nag, O. K.; Stewart, M. H.; Deschamps, J. R.; Susumu, K.; Oh, E.; Tsytsarev, V.; Tang, Q. G.; Efros, A. L.; Vaxenburg, R.; Black, B. J. et al. Quantum dot–peptide–fullerene bioconjugates for visualization of in vitro and in vivo cellular membrane potential. ACS Nano 2017, 11, 5598–5613.Google Scholar
  146. [146]
    Murphy–Royal, C.; Dupuis, J. P.; Varela, J. A.; Panatier, A.; Pinson, B.; Baufreton, J.; Groc, L.; Oliet, S. H. R. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat. Neurosci. 2015, 18, 219–226.Google Scholar
  147. [147]
    Mahendra, S.; Zhu, H. G.; Colvin, V. L.; Alvarez, P. J. Quantum dot weathering results in microbial toxicity. Environ. Sci. Technol. 2008, 42, 9424–9430.Google Scholar
  148. [148]
    Lin, C. H.; Chang, L. W.; Chang, H.; Yang, M. H.; Yang, C. S.; Lai, W. H.; Chang, W. H.; Lin, P. P. The chemical fate of the Cd/Se/Te–based quantum dot 705 in the biological system: Toxicity implications. Nanotechnology 2009, 20, 215101.Google Scholar
  149. [149]
    Ayoubi, M.; Naserzadeh, P.; Hashemi, M. T.; Reza Rostami, M.; Tamjid, E.; Tavakoli, M. M.; Simchi, A. Biochemical mechanisms of dose–dependent cytotoxicity and ROS–mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications. Sci. Rep. 2017, 7, 12896.Google Scholar
  150. [150]
    Corazzari, I.; Gilardino, A.; Dalmazzo, S.; Fubini, B.; Lovisolo, D. Localization of CdSe/ZnS quantum dots in the lysosomal acidic compartment of cultured neurons and its impact on viability: Potential role of ion release. Toxicol. Vitr. 2013, 27, 752–759.Google Scholar
  151. [151]
    Fan, J. J.; Wang, S. F.; Zhang, X. Y.; Chen, W.; Li, Y. B.; Yang, P.; Cao, Z. L.; Wang, Y. C.; Lu, W. Y.; Ju, D. W. Quantum dots elicit hepatotoxicity through lysosomedependent autophagy activation and reactive oxygen species production. ACS Biomater. Sci. Eng. 2018, 4, 1418–1427.Google Scholar
  152. [152]
    Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R. R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654.Google Scholar
  153. [153]
    Pauksch, L.; Hartmann, S.; Rohnke, M.; Szalay, G.; Alt, V.; Schnettler, R.; Lips, K. S. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater. 2014, 10, 439–449.Google Scholar
  154. [154]
    Mohamed, M. B.; Volkov, V.; Link, S.; El–Sayed, M. A. The ‘lightning’ gold nanorods: Fluorescence enhancement of over a million compared to the gold metal. Chem. Phys. Lett. 2000, 317, 517–523.Google Scholar
  155. [155]
    Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.Google Scholar
  156. [156]
    Betzer, O.; Perets, N.; Angel, A.; Motiei, M.; Sadan, T.; Yadid, G.; Offen, D.; Popovtzer, R. In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano 2017, 11, 10883–10893.Google Scholar
  157. [157]
    Fazaeli, Y.; Akhavan, O.; Rahighi, R.; Reza–Aboudzadeh, M.; Karimi, E.; Afarideh, H. In vivo SPECT imaging of tumors by 198,199Au–labeled graphene oxide nanostructures. Mater. Sci. Eng. C 2014, 45, 196–204.Google Scholar
  158. [158]
    Shin, T.–H.; Choi, Y.; Kim, S.; Cheon, J. Recent advances in magnetic nanoparticle–based multi–modal imaging. Chem. Soc. Rev. 2015, 44, 4501–4516.Google Scholar
  159. [159]
    Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P. Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol. Pharmaceutics 2013, 10, 831–847.Google Scholar
  160. [160]
    Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle–based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079.Google Scholar
  161. [161]
    Sonavane, G.; Tomoda, K.; Makino, K. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surfaces B Biointerfaces 2008, 66, 274–280.Google Scholar
  162. [162]
    Raliya, R.; Saha, D.; Chadha, T. S.; Raman, B.; Biswas, P. Non–invasive aerosol delivery and transport of gold nanoparticles to the brain. Sci. Rep. 2017, 7, 44718.Google Scholar
  163. [163]
    Cheng, Y.; Meyers, J. D.; Agnes, R. S.; Doane, T. L.; Kenney, M. E.; Broome, A. M.; Burda, C.; Basilion, J. P. Addressing brain tumors with targeted gold nanoparticles: A new gold standard for hydrophobic drug delivery? Small 2011, 7, 2301–2306.Google Scholar
  164. [164]
    Wang, H.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J.–X. In vitro and in vivo two–photon luminescence imaging of single gold nanorods. Proc. Natl. Acad. Sci. USA 2005, 102, 15752–15756.Google Scholar
  165. [165]
    Díez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.Google Scholar
  166. [166]
    Choi, S.; Dickson, R. M.; Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.Google Scholar
  167. [167]
    Del Bonis–O’Donnell, J. T.; Thakrar, A.; Hirschberg, J. W.; Vong, D.; Queenan, B. N.; Fygenson, D. K.; Pennathur, S. DNA–stabilized silver nanoclusters as specific, ratiometric fluorescent dopamine sensors. ACS Chem. Neurosci. 2018, 9, 849–857.Google Scholar
  168. [168]
    Akbarzadeh, A.; Rezaei–Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati–Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102.Google Scholar
  169. [169]
    Chan, J. M.; Valencia, P. M.; Zhang, L. F.; Langer, R.; Farokhzad, O. C. Polymeric nanoparticles for drug delivery. In Cancer Nanotechnology; Grobmyer, S.; Moudgil, B., Eds.; Humana Press: New York, 2010; pp 163–175.Google Scholar
  170. [170]
    Peng, H.–S.; Chiu, D. T. Soft fluorescent nanomaterials for biological and biomedical imaging. Chem. Soc. Rev. 2015, 44, 4699–4722.Google Scholar
  171. [171]
    Metselaar, J. M.; Bruin, P.; De Boer, L. W. T.; De Vringer, T.; Snel, C.; Oussoren, C.; Wauben, M. H. M.; Crommelin, D. J. A.; Storm, G.; Hennink, W. E. A novel family of L–amino acid–based biodegradable polymer–lipid conjugates for the development of long–circulating liposomes with effective drug–targeting capacity. Bioconjugute Chem. 2003, 14, 1156–1164.Google Scholar
  172. [172]
    Nance, E. A.; Woodworth, G. F.; Sailor, K. A.; Shih, T.–Y.; Xu, Q. G.; Swaminathan, G.; Xiang, D.; Eberhart, C.; Hanes, J. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci. Transl. Med. 2012, 4, 149ra119.Google Scholar
  173. [173]
    Torchilin, V. P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov. 2005, 4, 145–160.Google Scholar
  174. [174]
    Kilin, V. N.; Anton, H.; Anton, N.; Steed, E.; Vermot, J.; Vandamme, T. F.; Mely, Y.; Klymchenko, A. S. Counterionenhanced cyanine dye loading into lipid nano–droplets for single–particle tracking in zebrafish. Biomaterials 2014, 35, 4950–4957.Google Scholar
  175. [175]
    Hong, G. S.; Zou, Y. P.; Antaris, A. L.; Diao, S.; Wu, D.; Cheng, K.; Zhang, X. D.; Chen, C. X.; Liu, B.; He, Y. H., et al. Ultrafast fluorescence imaging in vivo with conjugated polymer fluorophores in the second near–infrared window. Nat. Commun. 2014, 5, 4206.Google Scholar
  176. [176]
    Wellbourne–Wood, J.; Rimmele, T. S.; Chatton, J.–Y. Imaging extracellular potassium dynamics in brain tissue using a potassium–sensitive nanosensor. Neurophotonics 2017, 4, 015002.Google Scholar
  177. [177]
    Richers, M. T.; Amatrudo, J. M.; Olson, J. P.; Ellis–Davies, G. C. R. Cloaked caged compounds: Chemical probes for two–photon optoneurobiology. Angew. Chem., Int. Ed. 2017, 56, 193–197.Google Scholar
  178. [178]
    Albertazzi, L.; Gherardini, L.; Brondi, M.; Sulis Sato, S.; Bifone, A.; Pizzorusso, T.; Ratto, G. M.; Bardi, G. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol. Pharmaceutics 2013, 10, 249–260.Google Scholar
  179. [179]
    Shakhbazau, A.; Mishra, M.; Chu, T. H.; Brideau, C.; Cummins, K.; Tsutsui, S.; Shcharbin, D.; Majoral, J. P.; Mignani, S.; Blanchard–Desce, M. et al. Fluorescent phosphorus dendrimer as a spectral nanosensor for macrophage polarization and fate tracking in spinal cord injury. Macromol. Biosci. 2015, 15, 1523–1534.Google Scholar
  180. [180]
    Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Itty Ipe, B.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.Google Scholar
  181. [181]
    Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface–enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.Google Scholar
  182. [182]
    Yamazoe, S.; Naya, M.; Shiota, M.; Morikawa, T.; Kubo, A.; Tani, T.; Hishiki, T.; Horiuchi, T.; Suematsu, M.; Kajimura, M. Large–area surface–enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite. ACS Nano 2014, 8, 5622–5632.Google Scholar
  183. [183]
    Wang, Y. L.; Seebald, J. L.; Szeto, D. P.; Irudayaraj, J. Biocompatibility and biodistribution of surface–enhanced Raman scattering nanoprobes in zebrafish embryos: In vivo and multiplex imaging. ACS Nano 2010, 4, 4039–4053.Google Scholar
  184. [184]
    Diaz, R. J.; McVeigh, P. Z.; O’Reilly, M. A.; Burrell, K.; Bebenek, M.; Smith, C.; Etame, A. B.; Zadeh, G.; Hynynen, K.; Wilson, B. C. et al. Focused ultrasound delivery of Raman nanoparticles across the blood–brain barrier: Potential for targeting experimental brain tumors. Nanomed. Nanotechnol. Biol. Med. 2014, 10, e1075–e1087.Google Scholar
  185. [185]
    Karabeber, H.; Huang, R. M.; Iacono, P.; Samii, J. M.; Pitter, K.; Holland, E. C.; Kircher, M. F. Guiding brain tumor resection using surface–enhanced Raman scattering nanoparticles and a hand–held Raman scanner. ACS Nano 2014, 8, 9755–9766.Google Scholar
  186. [186]
    Huang, R. M.; Harmsen, S.; Samii, J. M.; Karabeber, H.; Pitter, K. L.; Eric, C.; Kircher, M. F. High precision imaging of microscopic spread of glioblastoma with a targeted ultrasensitive SERRS molecular imaging probe. Theranostics 2016, 6, 1075–1084.Google Scholar
  187. [187]
    Machtoub, L.; Bataveljić, D.; Andjus, P. R. Molecular imaging of brain lipid environment of lymphocytes in amyotrophic lateral sclerosis using magnetic resonance imaging and SECARS microscopy. Physiol. Res. 2011, 60, S121–S127.Google Scholar
  188. [188]
    Xia, J.; Yao, J.; Wang, L. V. Photoacoustic tomography: Principles and advances (invited review). Electromagn. Waves 2014, 147, 1–22.Google Scholar
  189. [189]
    Lu, W.; Huang, Q.; Ku, G.; Wen, X. X.; Zhou, M.; Guzatov, D.; Brecht, P.; Su, R.; Oraevsky, A.; Wang, L. V. et al. Photoacoustic imaging of living mouse brain vasculature using hollow gold nanospheres. Biomaterials 2010, 31, 2617–2626.Google Scholar
  190. [190]
    Ray, A.; Wang, X. D.; Lee, Y. K.; Hah, H. J.; Kim, G.; Chen, T.; Orringer, D. A.; Sagher, O.; Liu, X. J.; Kopelman, R. Targeted blue nanoparticles as photoacoustic contrast agent for brain tumor delineation. Nano Res. 2011, 4, 1163–1173.Google Scholar
  191. [191]
    Fan, Q. L.; Cheng, K.; Yang, Z.; Zhang, R. P.; Yang, M.; Hu, X.; Ma, X. W.; Bu, L. H.; Lu, X. M.; Xiong, X. X. et al. Perylene–diimide–based nanoparticles as highly efficient photoacoustic agents for deep brain tumor imaging in living mice. Adv. Mater. 2015, 27, 843–847.Google Scholar
  192. [192]
    Kircher, M. F.; De La Zerda, A.; Jokerst, J. V.; Zavaleta, C. L.; Kempen, P. J.; Mittra, E.; Pitter, K.; Huang, R. M.; Campos, C.; Habte, F. et al. A brain tumor molecular imaging strategy using a new triple–modality MRIphotoacoustic–Raman nanoparticle. Nat. Med. 2012, 18, 829–834.Google Scholar
  193. [193]
    Kim, S. M.; Jeong, C. H.; Woo, J. S.; Ryu, C. H.; Lee, J.–H.; Jeun, S.–S. In vivo near–infrared imaging for the tracking of systemically delivered mesenchymal stem cells: Tropism for brain tumors and biodistribution. Int. J. Nanomedicine 2016, 11, 13–23.Google Scholar
  194. [194]
    Pereira, D. B.; Schmitz, Y.; Mészáros, J.; Merchant, P.; Hu, G.; Li, S.; Henke, A.; Lizardi–Ortiz, J. E.; Karpowicz, R. J.; Morgenstern, T. J. et al. fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat. Neurosci. 2016, 19, 578–586.Google Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jackson T. Del Bonis-O’Donnell
    • 1
  • Linda Chio
    • 1
  • Gabriel F. Dorlhiac
    • 2
  • Ian R. McFarlane
    • 1
  • Markita P. Landry
    • 1
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringUniversity of CaliforniaBerkeleyUSA
  2. 2.Biophysics Graduate GroupUniversity of CaliforniaBerkeleyUSA
  3. 3.Innovative Genomics Institute (IGI)BerkeleyUSA
  4. 4.California Institute for Quantitative Biosciences, QB3University of CaliforniaBerkeleyUSA
  5. 5.Chan-Zuckerberg BiohubSan FranciscoUSA

Personalised recommendations