Advertisement

Nano Research

, Volume 11, Issue 12, pp 6155–6166 | Cite as

Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries

  • Hengyi Lu
  • Chao Zhang
  • Youfang Zhang
  • Yunpeng Huang
  • Mingkai Liu
  • Tianxi Liu
Research Article
  • 222 Downloads

Abstract

Metal-organic framework (MOF)-derived functional carbon matrices have recently attracted considerable attention as energy-storage materials. However, the development of MOF-derived carbon materials with hierarchical structures, capable of thoroughly preventing the “shuttling᾿of polysulfides, is still a major challenge. Herein, we synthesized cobalt nanoparticle-containing porous carbon polyhedra with in situ grown N-doped carbon nanotube (CNT) backbone (NCCNT-Co), using zeolitic imidazolate framework-67 (ZIF-67) as starting material. The obtained NCCNT-Co, with interconnected N-doped CNTs on both inner and outer surfaces, possesses an integrated conductive network, which can further accelerate the transport of electrons/ions inside the whole sulfur cathode. The mesoporous structure derived from the ZIF-67 matrix and the densely immobilized CNTs, coupled with the homogeneously doped N atoms and Co nanoparticles, can efficiently trap lithium polysulfides (LiPSs) by physical confinement and chemical interactions. Furthermore, the hierarchical structure of the porous carbon polyhedra enables a high sulfur loading of up to 76 wt.% and can also buffer the volume changes of active sulfur during the lithiation process. As a result, the NCCNT-Co-S cathode delivers a high initial specific capacity of 1,300 mAh·g−1 at 0.1 C, along with a high capacity of 860 mAh·g−1 after 500 cycles at 1 C, with an extremely low capacity decay of 0.024% per cycle.

Keywords

zeolitic imidazolate framework-67 (ZIF-67) carbon nanotubes in situ growth Li-S batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Nos. 51433001 and 51373037), the Program of Shanghai Academic Research Leader (No. 17XD1400100), Natural Science Foundation of Jiangsu Province (No. BK20150238), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Supplementary material

12274_2018_2130_MOESM1_ESM.pdf (1.1 mb)
Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries

References

  1. [1]
    Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.CrossRefGoogle Scholar
  2. [2]
    Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.Google Scholar
  3. [3]
    Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.CrossRefGoogle Scholar
  4. [4]
    Xiao, J.; Hu, J. Z.; Chen, H. H.; Vijayakumar, M.; Zheng, J. M.; Pan, H. L.; Walter, E. D.; Hu, M.; Deng, X. C.; Feng, J. et al. Following the transient reactions in lithium-sulfur batteries using an in situ nuclear magnetic resonance technique. Nano Lett. 2015, 15, 3309–3316.CrossRefGoogle Scholar
  5. [5]
    Zhao, T.; Ye, Y. S.; Peng, X. Y.; Divitini, G.; Kim, H. K.; Lao, C. Y.; Coxon, P. R.; Xi, K.; Liu, Y. J.; Ducati, C. et al. Advanced lithium-sulfur batteries enabled by a bio-inspired polysulfide adsorptive brush. Adv. Funct. Mater. 2016, 26, 8418–8426.CrossRefGoogle Scholar
  6. [6]
    Chung, S. H.; Manthiram, A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries. Adv. Mater. 2014, 26, 7352–7357.CrossRefGoogle Scholar
  7. [7]
    Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 2016, 28, 3374–3382.CrossRefGoogle Scholar
  8. [8]
    Wei Seh, Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; Mcdowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.CrossRefGoogle Scholar
  9. [9]
    Chung, S. H.; Han, P.; Singhal, R.; Kalra, V.; Manthiram, A. Electrochemically stable rechargeable lithium-sulfur batteries with a microporous carbon nanofiber filter for polysulfide. Adv. Energy Mater. 2015, 5, 1500738.CrossRefGoogle Scholar
  10. [10]
    Ma, L.; Hendrickson, K. E.; Wei, S. Y.; Archer, L. A. Nanomaterials: Science and applications in the lithium–sulfur battery. Nano Today 2015, 10, 315–338.CrossRefGoogle Scholar
  11. [11]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  12. [12]
    Peng, H. J.; Huang, J. Q.; Zhao, M. Q.; Zhang, Q.; Cheng, X. B.; Liu, X. Y.; Qian, W. Z.; Wei, F. Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithiumsulfur batteries. Adv. Funct. Mater. 2014, 24, 2772–2781.CrossRefGoogle Scholar
  13. [13]
    Zhu, L.; Peng, H. J.; Liang, J. Y.; Huang, J. Q.; Chen, C. M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as freestanding paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 2015, 11, 746–755.CrossRefGoogle Scholar
  14. [14]
    Yu, H. J.; Li, H. W.; Yuan, S. Y.; Yang, Y. C.; Zheng, J. H.; Hu, J. H.; Yang, D.; Wang, Y. G.; Dong, A. G. Threedimensionally ordered, ultrathin graphitic-carbon frameworks with cage-like mesoporosity for highly stable Li-S batteries. Nano Res. 2017, 10, 2495–2507.CrossRefGoogle Scholar
  15. [15]
    Li, H. P.; Sun, L. C.; Zhang, Y. G.; Tan, T. Z.; Wang, G. K.; Bakenov, Z. Enhanced cycle performance of Li/S battery with the reduced graphene oxide/activated carbon functional interlayer. J. Energy Chem. 2017, 26, 1276–1281.CrossRefGoogle Scholar
  16. [16]
    Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithiumsulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.CrossRefGoogle Scholar
  17. [17]
    Qiu, Y. C.; Li, W. F.; Zhao, W.; Li, G. Z.; Hou, Y.; Liu, M. N.; Zhou, L. S.; Ye, F. M.; Li, H. F.; Wei, Z. H. et al. High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett. 2014, 14, 4821–4827.CrossRefGoogle Scholar
  18. [18]
    Zhou, G. M.; Zhao, Y. B.; Manthiram, A. Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries. Adv. Energy Mater. 2015, 5, 1402263.CrossRefGoogle Scholar
  19. [19]
    Hernández-Rentero, C.; Córdoba, R.; Moreno, N.; Caballero, A.; Morales, J.; Olivares-Marín, M.; Gómez-Serrano, V. Low-cost disordered carbons for Li/S batteries: A highperformance carbon with dual porosity derived from cherry pits. Nano Res. 2018, 11, 89–100.CrossRefGoogle Scholar
  20. [20]
    Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.CrossRefGoogle Scholar
  21. [21]
    Patil, S. B.; Kim, H. J.; Lim, H.; Oh, S. M.; Kim, J.; Shin, J.; Kim, H.; Choi, J. W.; Hwang, S. Exfoliated 2D lepidocrocite titanium oxide nanosheets for high sulfur content cathodes with highly stable Li-S battery performance. ACS Energy Lett. 2018, 3, 412–419.CrossRefGoogle Scholar
  22. [22]
    Chen, T.; Ma, L. B.; Cheng, B. R.; Chen, R. P.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Liang, J.; Tie, Z. X.; Liu, J. et al. Metallic and polar Co9S8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithium−sulfur batteries. Nano Energy 2017, 38, 239–248.CrossRefGoogle Scholar
  23. [23]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  24. [24]
    Park, K.; Cho, J. H.; Jang, J. H.; Yu, B. C.; De La Hoz, A. T.; Miller, K. M.; Ellison, C. J.; Goodenough, J. B. Trapping lithium polysulfides of a Li-S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 2015, 8, 2389–2395.CrossRefGoogle Scholar
  25. [25]
    Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven Mxene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.CrossRefGoogle Scholar
  26. [26]
    Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv. Mater. 2017, 29, 1601759.CrossRefGoogle Scholar
  27. [27]
    Wu, H. B.; Wei, S. Y.; Zhang, L.; Xu, R.; Hng, H. H.; Lou, X. W. D. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. Chem. —Eur. J. 2013, 19, 10804–10808.CrossRefGoogle Scholar
  28. [28]
    Xi, K.; Cao, S. A.; Peng, X. Y.; Ducati, C.; Vasant Kumar, R.; Cheetham, A. K. Carbon with hierarchical pores from carbonized metal-organic frameworks for lithium sulphur batteries. Chem. Commun. 2013, 49, 2192–2194.CrossRefGoogle Scholar
  29. [29]
    Bai, L. Y.; Chao, D. L.; Xing, P. Y.; Tou, L. J.; Chen, Z.; Jana, A.; Shen, Z. X.; Zhao, Y. L. Refined sulfur nanoparticles immobilized in metal-organic polyhedron as stable cathodes for Li-S battery. ACS Appl. Mater. Interfaces 2016, 8, 14328–14333.CrossRefGoogle Scholar
  30. [30]
    Li, Z. Q.; Li, C. X.; Ge, X. L.; Ma, J. Y.; Zhang, Z. W.; Li, Q.; Wang, C. X.; Yin, L. W. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries. Nano Energy 2016, 23, 15–26.CrossRefGoogle Scholar
  31. [31]
    He, J. R.; Chen, Y. F.; Lv, W. Q.; Wen, K. C.; Xu, C.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. From metalorganic framework to Li2S@C-Co-N nanoporous architecture: A high-capacity cathode for lithium-sulfur batteries. ACS Nano 2016, 10, 10981–10987.CrossRefGoogle Scholar
  32. [32]
    Qiu, Y. C.; Li, G. Z.; Hou, Y.; Pan, Z. H.; Li, H. F.; Li, W. F.; Liu, M. N.; Ye, F. M.; Yang, X. W.; Zhang, Y. G. Vertically aligned carbon nanotubes on carbon nanofibers: A hierarchical three-dimensional carbon nanostructure for high-energy flexible supercapacitors. Chem. Mater. 2015, 27, 1194–1200.CrossRefGoogle Scholar
  33. [33]
    Zhang, R. Z.; He, S. J.; Lu, Y. Z.; Chen, W. Fe, Co, N-functionalized carbon nanotubes in situ grown on 3D porous N-doped carbon foams as a noble metal-free catalyst for oxygen reduction. J. Mater. Chem. A 2015, 3, 3559–3567.CrossRefGoogle Scholar
  34. [34]
    Sun, J. K.; Xu, Q. Functional materials derived from open framework templates/precursors: Synthesis and applications. Energy Environ. Sci. 2014, 7, 2071–2100.CrossRefGoogle Scholar
  35. [35]
    Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W. D.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.CrossRefGoogle Scholar
  36. [36]
    Gulzar, U.; Li, T.; Bai, X.; Colombo, M.; Ansaldo, A.; Marras, S.; Prato, M.; Goriparti, S.; Capiglia, C.; Proietti Zaccaria, R. Nitrogen-doped single-walled carbon nanohorns as a cost-effective carbon host toward high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 5551–5559.CrossRefGoogle Scholar
  37. [37]
    Chen, J. J.; Yuan, R. M.; Feng, J. M.; Zhang, Q.; Huang, J. X.; Fu, G.; Zheng, M. S.; Ren, B.; Dong, Q. F. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery. Chem. Mater. 2015, 27, 2048–2055.CrossRefGoogle Scholar
  38. [38]
    Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed. 2015, 54, 4325–4329.CrossRefGoogle Scholar
  39. [39]
    Xiang, Z. H.; Xue, Y. H.; Cao, D. P.; Huang, L.; Chen, J. F.; Dai, L. M. Highly efficient electrocatalysts for oxygen reduction based on 2D covalent organic polymers complexed with non-precious metals. Angew. Chem., Int. Ed. 2014, 53, 2433–2437.CrossRefGoogle Scholar
  40. [40]
    Zheng, J. M.; Tian, J.; Wu, D. X.; Gu, M.; Xu, W.; Wang, C. M.; Gao, F.; Engelhard, M. H.; Zhang, J. G.; Liu, J. et al. Lewis acid-base interactions between polysulfides᾿ and metal organic framework in lithium sulfur batteries. Nano Lett. 2014, 14, 2345–2352.CrossRefGoogle Scholar
  41. [41]
    Chen, T.; Cheng, B. R.; Zhu, G. Y.; Chen, R. P.; Hu, Y.; Ma, L. B.; Lv, H. L.; Wang, Y. R.; Liang, J.; Tie, Z. X. et al. Highly efficient retention of polysulfides in “sea urchin᾿like carbon nanotube/nanopolyhedra superstructures as cathode material for ultralong-life lithium-sulfur batteries. Nano Lett. 2017, 17, 437–444.CrossRefGoogle Scholar
  42. [42]
    Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.CrossRefGoogle Scholar
  43. [43]
    Tan, J.; Liu, D. N.; Xu, X.; Mai, L. Q. In situ/operando characterization techniques for rechargeable lithium-sulfur batteries: A review. Nanoscale 2017, 9, 19001–19016.CrossRefGoogle Scholar
  44. [44]
    Qie, L.; Manthiram, A. A facile layer-by-layer approach for high-areal-capacity sulfur cathodes. Adv. Mater. 2015, 27, 1694–1700.CrossRefGoogle Scholar
  45. [45]
    Li, Z.; Jiang, Y.; Yuan, L. X.; Yi, Z. Q.; Wu, C.; Liu, Y.; Strasser, P.; Huang, Y. H. A highly ordered meso@ microporous carbon-supported sulfur@smaller sulfur coreshell structured cathode for Li-S batteries. ACS Nano 2014, 8, 9295–9303.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and TechnologyDonghua UniversityShanghaiChina
  2. 2.State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular ScienceFudan UniversityShanghaiChina
  3. 3.School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional MaterialsJiangsu Normal UniversityXuzhouChina

Personalised recommendations