Design of synthetic materials for intracellular delivery of RNAs: From siRNA-mediated gene silencing to CRISPR/Cas gene editing

  • Jason B. Miller
  • Daniel J. Siegwart
Review Article


Ribonucleic acids (RNAs) possess great therapeutic potential and can be used to treat a variety of diseases. The unique biophysical properties of RNAs, such as high molecular weight, negative charge, hydrophilicity, low stability, and potential immunogenicity, require chemical modification and development of carriers to enable intracellular delivery of RNAs for clinical use. A variety of nanomaterials have been developed for the effective in vivo delivery of short/small RNAs, messenger RNAs, and RNAs required for gene editing technologies including clustered regularly interspaced palindromic repeat (CRISPR)/Cas. This review outlines the challenges of delivering RNA therapeutics, explores the chemical synthesis of RNA modifications and carriers, and describes the efforts to design nanomaterials that can be used for a variety of clinical indications.


nucleic acid therapeutics nanoparticles synthetic nanomaterials RNAi mRNA CRISPR/Cas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



D. J. S. acknowledges financial support from the Welch Foundation (I-1855), American Cancer Society (RSG-17-012-01), Department of Defense (CA150245P3), and Cancer Prevention and Research Institute of Texas (CPRIT) (R1212).


  1. [1]
    Wu, S. Y.; Lopez-Berestein, G.; Calin, G. A.; Sood, A. K. RNAi therapies: Drugging the undruggable. Sci. Transl. Med. 2014, 6, 240ps7.Google Scholar
  2. [2]
    Cox, A. D.; Fesik, S. W.; Kimmelman, A. C.; Luo, J.; Der, C. J. Drugging the undruggable RAS: Mission possible? Nat. Rev. Drug Discovery 2014, 13, 828–851.CrossRefGoogle Scholar
  3. [3]
    Zhou, K. J.; Nguyen, L. H.; Miller, J. B.; Yan, Y. F.; Kos, P.; Xiong, H.; Li, L.; Hao, J.; Minnig, J. T.; Zhu, H. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl. Acad. Sci. USA 2016, 113, 520–525.CrossRefGoogle Scholar
  4. [4]
    Daige, C. L.; Wiggins, J. F.; Priddy, L.; Nelligan-Davis, T.; Zhao, J.; Brown, D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol. Cancer Ther. 2014, 13, 2352–2360.CrossRefGoogle Scholar
  5. [5]
    Rupaimoole, R.; Slack, F. J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discovery 2017, 16, 203–222.CrossRefGoogle Scholar
  6. [6]
    Cutting, G. R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–56.CrossRefGoogle Scholar
  7. [7]
    Tabebordbar, M.; Zhu, K. X.; Cheng, J. K. W.; Chew, W. L.; Widrick, J. J.; Yan, W. X.; Maesner, C.; Wu, E. Y.; Xiao, R.; Ran, F. A. et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 2016, 351, 407–411.CrossRefGoogle Scholar
  8. [8]
    Nelson, C. E.; Hakim, C. H.; Ousterout, D. G.; Thakore, P. I.; Moreb, E. A.; Rivera, R. M. C.; Madhavan, S.; Pan, X. F.; Ran, F. A.; Yan, W. X. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016, 351, 403–407.CrossRefGoogle Scholar
  9. [9]
    Long, C. Z.; Amoasii, L.; Mireault, A. A.; McAnally, J. R.; Li, H.; Sanchez-Ortiz, E.; Bhattacharyya, S.; Shelton, J. M.; Bassel-Duby, R.; Olson, E. N. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016, 351, 400–403.CrossRefGoogle Scholar
  10. [10]
    Sánchez-Rivera, F. J.; Papagiannakopoulos, T.; Romero, R.; Tammela, T.; Bauer, M. R.; Bhutkar, A.; Joshi, N. S.; Subbaraj, L.; Bronson, R. T.; Xue, W. et al. Rapid modelling of cooperating genetic events in cancer through somatic genome editing. Nature 2014, 516, 428–431.CrossRefGoogle Scholar
  11. [11]
    Verdine, G. L.; Walensky, L. D. The challenge of drugging undruggable targets in cancer: Lessons learned from targeting BCL-2 family members. Clin. Cancer Res. 2007, 13, 7264–7270.CrossRefGoogle Scholar
  12. [12]
    Aagaard, L.; Rossi, J. J. RNAi therapeutics: Principles, prospects and challenges. Adv. Drug Deliver. Rev. 2007, 59, 75–86.CrossRefGoogle Scholar
  13. [13]
    Bobbin, M. L.; Rossi, J. J. RNA interference (RNAi)-based therapeutics: Delivering on the promise? Ann. Rev. Pharm. Tox. 2016, 56, 103–122.CrossRefGoogle Scholar
  14. [14]
    Akinc, A.; Zumbuehl, A.; Goldberg, M.; Leshchiner, E. S.; Busini, V.; Hossain, N.; Bacallado, S. A.; Nguyen, D. N.; Fuller, J.; Alvarez, R. et al. A combinatorial library of lipidlike materials for delivery of RNAi therapeutics. Nat. Biotechnol. 2008, 26, 561–569.CrossRefGoogle Scholar
  15. [15]
    Kanasty, R.; Dorkin, J. R.; Vegas, A.; Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 2013, 12, 967–977.CrossRefGoogle Scholar
  16. [16]
    Whitehead, K.; Langer, R.; Anderson, D. G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discovery 2009, 8, 129–138.CrossRefGoogle Scholar
  17. [17]
    Fire, A.; Xu, S. Q.; Montgomery, M. K.; Kostas, S. A.; Driver, S. E.; Mello, C. C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998, 391, 806–811.CrossRefGoogle Scholar
  18. [18]
    Hammond, S. M.; Bernstein, E.; Beach, D.; Hannon, G. J. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 2000, 404, 293–296.CrossRefGoogle Scholar
  19. [19]
    Elbashir, S. M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001, 411, 494–498.CrossRefGoogle Scholar
  20. [20]
    Haussecker, D. The business of RNAi therapeutics. Hum. Gene Ther. 2008, 19, 451–462.CrossRefGoogle Scholar
  21. [21]
    Haussecker, D. The business of RNAi therapeutics in 2012. Mol. Ther. Nucl. Acids 2012, 1, e8.CrossRefGoogle Scholar
  22. [22]
    Pack, D. W.; Hoffman, A. S.; Pun, S. Z.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discovery 2005, 4, 581–593.CrossRefGoogle Scholar
  23. [23]
    Kim, H.; Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 2014, 15, 321–334.CrossRefGoogle Scholar
  24. [24]
    Geall, A. J.; Verma, A.; Otten, G. R.; Shaw, C. A.; Hekele, A.; Banerjee, K.; Cu, Y.; Beard, C. W.; Brito, L. A.; Krucker, T. et al. Nonviral delivery of self-amplifying RNA vaccines. Proc. Natl. Acad. Sci. USA 2012, 109, 14604–14609.CrossRefGoogle Scholar
  25. [25]
    Kowalczyk, A.; Doener, F.; Zanzinger, K.; Noth, J.; Baumhof, P.; Fotin-Mleczek, M.; Heidenreich, R. Self-adjuvanted mRNA vaccines induce local innate immune responses that lead to a potent and boostable adaptive immunity. Vaccine 2016, 34, 3882–3893.CrossRefGoogle Scholar
  26. [26]
    Li, M.; Zhao, M. N.; Fu, Y.; Li, Y.; Gong, T.; Zhang, Z. R.; Sun, X. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra-and paracellular pathways. J. Control. Release 2016, 228, 9–19.CrossRefGoogle Scholar
  27. [27]
    Pardi, N.; Hogan, M. J.; Porter, F. W.; Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discovery 2018, 17, 261–279.CrossRefGoogle Scholar
  28. [28]
    Petsch, B.; Schnee, M.; Vogel, A. B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K. J.; Stitz, L. et al. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol. 2012, 30, 1210–1216.CrossRefGoogle Scholar
  29. [29]
    Richner, J. M.; Himansu, S.; Dowd, K. A.; Butler, S. L.; Salazar, V.; Fox, J. M.; Julander, J. G.; Tang, W. W.; Shresta, S.; Pierson, T. C. et al. Modified mRNA vaccines protect against zika virus infection. Cell 2017, 168, 1114–1125.e10.CrossRefGoogle Scholar
  30. [30]
    Richner, J. M.; Jagger, B. W.; Shan, C.; Fontes, C. R.; Dowd, K. A.; Cao, B.; Himansu, S.; Caine, E. A.; Nunes, B. T. D.; Medeiros, D. B. A. et al. Vaccine mediated protection against zika virus-induced congenital disease. Cell 2017, 170, 273–283.e12.CrossRefGoogle Scholar
  31. [31]
    Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discovery 2014, 13, 759–780.CrossRefGoogle Scholar
  32. [32]
    Thran, M.; Mukherjee, J.; Pönisch, M.; Fiedler, K.; Thess, A.; Mui, B. L.; Hope, M. J.; Tam, Y. K.; Horscroft, N.; Heidenreich, R. et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol. Med. 2017, 9, 1434–1447.CrossRefGoogle Scholar
  33. [33]
    Kranz, L. M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K. C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401.CrossRefGoogle Scholar
  34. [34]
    Kübler, H.; Scheel, B.; Gnad-Vogt, U.; Miller, K.; Schultze-Seemann, W.; vom Dorp, F.; Parmiani, G.; Hampel, C.; Wedel, S.; Trojan, L. et al. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: A first-in-man phase I/IIa study. J. Immunotherapy Can. 2015, 3, 26.CrossRefGoogle Scholar
  35. [35]
    Scheel, B.; Aulwurm, S.; Probst, J.; Stitz, L.; Hoerr, I.; Rammensee, H. G.; Weller, M.; Pascolo, S. Therapeutic anti-tumor immunity triggered by injections of immunostimulating single-stranded RNA. Eur. J. Immun. 2006, 36, 2807–2816.CrossRefGoogle Scholar
  36. [36]
    Stadler, C. R.; Bähr-Mahmud, H.; Celik, L.; Hebich, B.; Roth, A. S.; Roth, R. P.; Karikó, K.; Türeci, Ö.; Sahin, U. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 2017, 23, 815–817.CrossRefGoogle Scholar
  37. [37]
    Hajj, K. A.; Whitehead, K. A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056.CrossRefGoogle Scholar
  38. [38]
    An, D.; Schneller, J. L.; Frassetto, A.; Liang, S.; Zhu, X. L.; Park, J. S.; Theisen, M.; Hong, S. J.; Zhou, J.; Rajendran, R. et al. Systemic messenger RNA therapy as a treatment for methylmalonic acidemia. Cell Rep. 2017, 21, 3548–3558.CrossRefGoogle Scholar
  39. [39]
    DeRosa, F.; Guild, B.; Karve, S.; Smith, L.; Love, K.; Dorkin, J. R.; Kauffman, K. J.; Zhang, J.; Yahalom, B.; Anderson, D. G. et al. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 2016, 23, 699–707.CrossRefGoogle Scholar
  40. [40]
    Karikó, K.; Muramatsu, H.; Keller, J. M.; Weissman, D. Increased erythropoiesis in mice injected with submicrogram quantities of pseudouridine-containing mrna encoding erythropoietin. Mol. Ther. 2012, 20, 948–953.CrossRefGoogle Scholar
  41. [41]
    Kormann, M. S. D.; Hasenpusch, G.; Aneja, M. K.; Nica, G.; Flemmer, A. W.; Herber-Jonat, S.; Huppmann, M.; Mays, L. E.; Illenyi, M.; Schams, A. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 2011, 29, 154–157.CrossRefGoogle Scholar
  42. [42]
    Ramaswamy, S.; Tonnu, N.; Tachikawa, K.; Limphong, P.; Vega, J. B.; Karmali, P. P.; Chivukula, P.; Verma, I. M. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl. Acad. Sci. USA 2017, 114, E1941–E1950.CrossRefGoogle Scholar
  43. [43]
    Ziller, A.; Nogueira, S. S.; Hühn, E.; Funari, S. S.; Brezesinski, G.; Hartmann, H.; Sahin, U.; Haas, H.; Langguth, P. Incorporation of mRNA in lamellar lipid matrices for parenteral administration. Mol. Pharmaceut. 2018, 15, 642–651.CrossRefGoogle Scholar
  44. [44]
    Song, M. The CRISPR/Cas9 system: Their delivery, in vivo and ex vivo applications and clinical development by startups. Biotechnol. Progr. 2017, 33, 1035–1045.CrossRefGoogle Scholar
  45. [45]
    Chen, J.; Guo, Z. P.; Tian, H. Y.; Chen, X. S. Production and clinical development of nanoparticles for gene delivery. Mol. Ther.-Methods Clin. Dev. 2016, 3, 16023.CrossRefGoogle Scholar
  46. [46]
    Liu, F.; Huang, L. Development of non-viral vectors for systemic gene delivery. J. Control. Release 2002, 78, 259–266.CrossRefGoogle Scholar
  47. [47]
    Zhi, D. F.; Zhang, S. B.; Cui, S. H.; Zhao, Y. A.; Wang, Y. H.; Zhao, D. F. The headgroup evolution of cationic lipids for gene delivery. Bioconjugate Chem. 2013, 24, 487–519.CrossRefGoogle Scholar
  48. [48]
    Zhi, D. F.; Zhang, S. B.; Wang, B.; Zhao, Y. N.; Yang, B. L.; Yu, S. J. Transfection efficiency of cationic lipids with different hydrophobic domains in gene delivery. Bioconjugate Chem. 2010, 21, 563–577.CrossRefGoogle Scholar
  49. [49]
    Kim, H. J.; Kim, A.; Miyata, K.; Kataoka, K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv. Drug Deliver. Rev. 2016, 104, 61–77.CrossRefGoogle Scholar
  50. [50]
    Sarett, S. M.; Nelson, C. E.; Duvall, C. L. Technologies for controlled, local delivery of siRNA. J. Control. Release 2015, 218, 94–113.CrossRefGoogle Scholar
  51. [51]
    Zuckerman, J. E.; Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discovery 2015, 14, 843–856.CrossRefGoogle Scholar
  52. [52]
    Granot, Y.; Peer, D. Delivering the right message: Challenges and opportunities in lipid nanoparticles-mediated modified mRNA therapeutics—An innate immune system standpoint. Semin. Immunol. 2017, 34, 68–77.CrossRefGoogle Scholar
  53. [53]
    Guan, S.; Rosenecker, J. Nanotechnologies in delivery of mRNA therapeutics using nonviral vector-based delivery systems. Gene Ther. 2017, 24, 133–143.CrossRefGoogle Scholar
  54. [54]
    Kauffman, K. J.; Webber, M. J.; Anderson, D. G. Materials for non-viral intracellular delivery of messenger RNA therapeutics. J. Control. Release 2016, 240, 227–234.CrossRefGoogle Scholar
  55. [55]
    Wang, H. X.; Li, M. Q.; Lee, C. M.; Chakraborty, S.; Kim, H. W.; Bao, G.; Leong, K. W. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem. Rev. 2017, 117, 9874–9906.CrossRefGoogle Scholar
  56. [56]
    Sander, J. D.; Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 2014, 32, 347–355.CrossRefGoogle Scholar
  57. [57]
    Cullis, P. R.; Hope, M. J. Lipid nanoparticle systems for enabling gene therapies. Mol. Ther. 2017, 25, 1467–1475.CrossRefGoogle Scholar
  58. [58]
    Whitehead, K. A.; Matthews, J.; Chang, P. H.; Niroui, F.; Dorkin, J. R.; Severgnini, M.; Anderson, D. G. In vitro-in vivo translation of lipid nanoparticles for hepatocellular siRNA delivery. ACS Nano 2012, 6, 6922–6929.CrossRefGoogle Scholar
  59. [59]
    Zatsepin, T. S.; Kotelevtsev, Y. V.; Koteliansky, V. Lipid nanoparticles for targeted siRNA delivery–going from bench to bedside. Int. J. Nanomed. 2016, 11, 3077–3086.CrossRefGoogle Scholar
  60. [60]
    Gary, D. J.; Puri, N.; Won, Y. Y. Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J. Control. Release 2007, 121, 64–73.CrossRefGoogle Scholar
  61. [61]
    Guillot-Nieckowski, M.; Eisler, S.; Diederich, F. Dendritic vectors for gene transfection. New J. Chem. 2007, 31, 1111–1127.CrossRefGoogle Scholar
  62. [62]
    Svenson, S.; Tomalia, D. A. Dendrimers in biomedical applications–reflections on the field. Adv. Drug Deliver. Rev. 2005, 57, 2106–2129.CrossRefGoogle Scholar
  63. [63]
    Chen, D. Q.; Dougherty, C. A.; Zhu, K. C.; Hong, H. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. J. Control. Release 2015, 210, 230–245.CrossRefGoogle Scholar
  64. [64]
    Kam, N. W. S.; Liu, Z.; Dai, H. J. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005, 127, 12492–12493.CrossRefGoogle Scholar
  65. [65]
    Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2008, 41, 60–68.CrossRefGoogle Scholar
  66. [66]
    Ghosh, P. S.; Kim, C. K.; Han, G.; Forbes, N. S.; Rotello, V. M. Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2008, 2, 2213–2218.CrossRefGoogle Scholar
  67. [67]
    Loh, X. J.; Lee, T. C.; Dou, Q. Q.; Deen, G. R. Utilising inorganic nanocarriers for gene delivery. Biomat. Sci. 2016, 4, 70–86.CrossRefGoogle Scholar
  68. [68]
    Sokolova, V.; Epple, M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew. Chem., Int. Ed. 2008, 47, 1382–1395.CrossRefGoogle Scholar
  69. [69]
    Xu, Z. P.; Zeng, Q. H.; Lu, G. Q.; Yu, A. B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006, 61, 1027–1040.CrossRefGoogle Scholar
  70. [70]
    Yan, Y. F.; Zhou, K. J.; Xiong, H.; Miller, J. B.; Motea, E. A.; Boothman, D. A.; Liu, L.; Siegwart, D. J. Aerosol delivery of stabilized polyester-siRNA nanoparticles to silence gene expression in orthotopic lung tumors. Biomaterials 2017, 118, 84–93.CrossRefGoogle Scholar
  71. [71]
    Fehring, V.; Schaeper, U.; Ahrens, K.; Santel, A.; Keil, O.; Eisermann, M.; Giese, K.; Kaufmann, J. Delivery of therapeutic siRNA to the lung endothelium via novel lipoplex formulation DACC. Mol. Ther. 2014, 22, 811–820.CrossRefGoogle Scholar
  72. [72]
    Ishiwata, H.; Suzuki, N.; Ando, S.; Kikuchi, H.; Kitagawa, T. Characteristics and biodistribution of cationic liposomes and their DNA complexes. J. Control. Release 2000, 69, 139–148.CrossRefGoogle Scholar
  73. [73]
    Love, K. T.; Mahon, K. P.; Levins, C. G.; Whitehead, K. A.; Querbes, W.; Dorkin, J. R.; Qin, J.; Cantley, W.; Qin, L. L.; Racie, T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl. Acad. Sci. USA 2010, 107, 1864–1869.CrossRefGoogle Scholar
  74. [74]
    Semple, S. C.; Akinc, A.; Chen, J. X.; Sandhu, A. P.; Mui, B. L.; Cho, C. K.; Sah, D. W. Y.; Stebbing, D.; Crosley, E. J.; Yaworski, E. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 2010, 28, 172–176.CrossRefGoogle Scholar
  75. [75]
    Dong, Y. Z.; Love, K. T.; Dorkin, J. R.; Sirirungruang, S.; Zhang, Y. L.; Chen, D. L.; Bogorad, R. L.; Yin, H.; Chen, Y.; Vegas, A. J. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl. Acad. Sci. USA 2014, 111, 3955–3960.CrossRefGoogle Scholar
  76. [76]
    Jayaraman, M.; Ansell, S. M.; Mui, B. L.; Tam, Y. K.; Chen, J. X.; Du, X. Y.; Butler, D.; Eltepu, L.; Matsuda, S.; Narayanannair, J. K. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem., Int. Ed. 2012, 51, 8529–8533.CrossRefGoogle Scholar
  77. [77]
    Maier, M. A.; Jayaraman, M.; Matsuda, S.; Liu, J.; Barros, S.; Querbes, W.; Tam, Y. K.; Ansell, S. M.; Kumar, V.; Qin, J. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther. 2013, 21, 1570–1578.CrossRefGoogle Scholar
  78. [78]
    Wittrup, A.; Ai, A.; Liu, X.; Hamar, P.; Trifonova, R.; Charisse, K.; Manoharan, M.; Kirchhausen, T.; Lieberman, J. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol. 2015, 33, 870–976.CrossRefGoogle Scholar
  79. [79]
    Sahay, G.; Querbes, W.; Alabi, C.; Eltoukhy, A.; Sarkar, S.; Zurenko, C.; Karagiannis, E.; Love, K.; Chen, D. L.; Zoncu, R. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol. 2013, 31, 653–658.CrossRefGoogle Scholar
  80. [80]
    Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stoter, M. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646.CrossRefGoogle Scholar
  81. [81]
    Sahay, G.; Alakhova, D. Y.; Kabanov, A. V. Endocytosis of nanomedicines. J. Control. Release 2010, 145, 182–195.CrossRefGoogle Scholar
  82. [82]
    Rehman, Z.; Zuhorn, I. S.; Hoekstra, D. How cationic lipids transfer nucleic acids into cells and across cellular membranes: Recent advances. J. Control. Release 2013, 166, 46–56.CrossRefGoogle Scholar
  83. [83]
    Layzer, J. M.; McCaffrey, A. P.; Tanner, A. K.; Huang, Z.; Kay, M. A.; Sullenger, B. A. In vivo activity of nucleaseresistant siRNAs. RNA 2004, 10, 766–771.CrossRefGoogle Scholar
  84. [84]
    Khvorova, A.; Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 2017, 35, 238–248.CrossRefGoogle Scholar
  85. [85]
    Behlke, M. A. Chemical modification of siRNAs for in vivo use. Oligonucleotides 2008, 18, 305–320.CrossRefGoogle Scholar
  86. [86]
    Patra, A.; Paolillo, M.; Charisse, K.; Manoharan, M.; Rozners, E.; Egli, M. 2’-fluoro RNA shows increased watson-crick H-bonding strength and stacking relative to RNA: Evidence from NMR and thermodynamic data. Angew. Chem., Int. Ed. 2012, 51, 11863–11866.CrossRefGoogle Scholar
  87. [87]
    Kalota, A.; Karabon, L.; Swider, C. R.; Viazovkina, E.; Elzagheid, M.; Damha, M. J.; Gewirtz, A. M. 2’-Deoxy-2’-fluoro-β-d-arabinonucleic acid (2’F-ANA) modified oligonucleotides (ON) effect highly efficient, and persistent, gene silencing. Nucleic Acids Res. 2006, 34, 451–461.CrossRefGoogle Scholar
  88. [88]
    Braasch, D. A.; Paroo, Z.; Constantinescu, A.; Ren, G.; Öz, O. K.; Mason, R. P.; Corey, D. R. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 2004, 14, 1139–1143.CrossRefGoogle Scholar
  89. [89]
    Corey, D. R. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat. Neurosci. 2017, 20, 497–499.CrossRefGoogle Scholar
  90. [90]
    Meade, B. R.; Gogoi, K.; Hamil, A. S.; Palm-Apergi, C.; van den Berg, A.; Hagopian, J. C.; Springer, A. D.; Eguchi, A.; Kacsinta, A. D.; Dowdy, C. F. et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat. Biotechnol. 2014, 32, 1256–1261.CrossRefGoogle Scholar
  91. [91]
    Kole, R.; Krainer, A. R.; Altman, S. RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug Discovery 2012, 11, 125–140.CrossRefGoogle Scholar
  92. [92]
    Ray, A.; Nordén, B. Peptide nucleic acid (PNA): Its medical and biotechnical applications and promise for the future. FASEB J. 2000, 14, 1041–1060.CrossRefGoogle Scholar
  93. [93]
    Almeida, M. I.; Reis, R. M.; Calin, G. A. MicroRNA history: Discovery, recent applications, and next frontiers. Mutat. Res./Fund. Mol. Mechan. Mutag. 2011, 717, 1–8.CrossRefGoogle Scholar
  94. [94]
    Ling, H.; Fabbri, M.; Calin, G. A. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discovery 2013, 12, 847–865.CrossRefGoogle Scholar
  95. [95]
    Matsui, M.; Corey, D. R. Non-coding RNAs as drug targets. Nat. Rev. Drug Discovery 2017, 16, 167–179.CrossRefGoogle Scholar
  96. [96]
    Youngblood, D. S.; Hatlevig, S. A.; Hassinger, J. N.; Iversen, P. L.; Moulton, H. M. Stability of cell-penetrating peptide− morpholino oligomer conjugates in human serum and in cells. Bioconjugate Chem. 2007, 18, 50–60.CrossRefGoogle Scholar
  97. [97]
    Echigoya, Y.; Nakamura, A.; Nagata, T.; Urasawa, N.; Lim, K. R. Q.; Trieu, N.; Panesar, D.; Kuraoka, M.; Moulton, H. M.; Saito, T. et al. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 2017, 114, 4213–4218.CrossRefGoogle Scholar
  98. [98]
    Lim, K. R. Q.; Maruyama, R.; Yokota, T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Design Dev. Ther. 2017, 11, 533–545.CrossRefGoogle Scholar
  99. [99]
    Lu-Nguyen, N.; Malerba, A.; Popplewell, L.; Schnell, F.; Hanson, G.; Dickson, G. Systemic antisense therapeutics for dystrophin and myostatin exon splice modulation improve muscle pathology of adult mdx mice. Mol. Ther. Nucl. Acids 2017, 6, 15–28.CrossRefGoogle Scholar
  100. [100]
    Vaish, N.; Chen, F.; Seth, S.; Fosnaugh, K.; Liu, Y.; Adami, R.; Brown, T.; Chen, Y.; Harvie, P.; Johns, R. et al. Improved specificity of gene silencing by siRNAs containing unlocked nucleobase analogs. Nucleic Acids Res. 2011, 39, 1823–1832.CrossRefGoogle Scholar
  101. [101]
    Campbell, M. A.; Wengel, J. Locked vs. unlocked nucleic acids (LNA vs. UNA): Contrasting structures work towards common therapeutic goals. Chem. Soc. Rev. 2011, 40, 5680–5689.Google Scholar
  102. [102]
    Yanagi, T.; Tachikawa, K.; Wilkie-Grantham, R.; Hishiki, A.; Nagai, K.; Toyonaga, E.; Chivukula, P.; Matsuzawa, S. I. Lipid nanoparticle-mediated siRNA transfer against PCTAIRE1/PCTK1/Cdk16 inhibits in vivo cancer growth. Mol. Ther.-Nucl. Acids 2016, 5, e327.CrossRefGoogle Scholar
  103. [103]
    Yaghi, N. K.; Wei, J.; Hashimoto, Y.; Kong, L. Y.; Gabrusiewicz, K.; Nduom, E. K.; Ling, X.; Huang, N.; Zhou, S.; Kerrigan, B. C. P. et al. Immune modulatory nanoparticle therapeutics for intracerebral glioma. Neuro Oncol. 2017, 19, 372–382.Google Scholar
  104. [104]
    Aleku, M.; Schulz, P.; Keil, O.; Santel, A.; Schaeper, U.; Dieckhoff, B.; Janke, O.; Endruschat, J.; Durieux, B.; Röder, N. et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res. 2008, 68, 9788–9798.CrossRefGoogle Scholar
  105. [105]
    Santel, A.; Aleku, M.; Röder, N.; Möpert, K.; Durieux, B.; Janke, O.; Keil, O.; Endruschat, J.; Dames, S.; Lange, C. et al. Atu027 prevents pulmonary metastasis in experimental and spontaneous mouse metastasis models. Clin. Cancer Res. 2010, 16, 5469–5480.CrossRefGoogle Scholar
  106. [106]
    Schultheis, B.; Strumberg, D.; Santel, A.; Vank, C.; Gebhardt, F.; Keil, O.; Lange, C.; Giese, K.; Kaufmann, J.; Khan, M. et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol. 2014, 32, 4141–4148.CrossRefGoogle Scholar
  107. [107]
    Dudek, H.; Wong, D. H.; Arvan, R.; Shah, A.; Wortham, K.; Ying, B.; Diwanji, R.; Zhou, W.; Holmes, B.; Yang, H. L. et al. Knockdown of β-catenin with dicer-substrate siRNAs reduces liver tumor burden in vivo. Mol. Ther. 2014, 22, 92–101.CrossRefGoogle Scholar
  108. [108]
    Ganesh, S.; Koser, M. L.; Cyr, W. A.; Chopda, G. R.; Tao, J. Y.; Shui, X.; Ying, B.; Chen, D. Y.; Pandya, P.; Chipumuro, E. et al. Direct pharmacological inhibition of β-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther. 2016, 15, 2143–2154.CrossRefGoogle Scholar
  109. [109]
    Lee, S. H.; Kang, Y. Y.; Jang, H. E.; Mok, H. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv. Drug Deliver. Rev. 2016, 104, 78–92.CrossRefGoogle Scholar
  110. [110]
    Dohmen, C.; Fröhlich, T.; Lächelt, U.; Röhl, I.; Vornlocher, H. P.; Hadwiger, P.; Wagner, E. Defined folate-PEG-siRNA conjugates for receptor-specific gene silencing. Mol. Ther.-Nucl. Acids 2012, 1, e7.CrossRefGoogle Scholar
  111. [111]
    Zwicke, G. L.; Mansoori, G. A.; Jeffery, C. J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev. 2012, 3, 18496.CrossRefGoogle Scholar
  112. [112]
    Alam, M. R.; Ming, X.; Fisher, M.; Lackey, J.; Rajeev, K. G.; Manoharan, M.; Juliano, R. Multivalent cyclic RGD conjugates for targeted delivery of siRNA. Bioconjugate Chem. 2011, 22, 1673–1681.CrossRefGoogle Scholar
  113. [113]
    Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharmaceutics 2012, 9, 2961–2973.CrossRefGoogle Scholar
  114. [114]
    Alterman, J. F.; Hall, L. M.; Coles, A. H.; Hassler, M. R.; Didiot, M. C.; Chase, K.; Abraham, J.; Sottosanti, E.; Johnson, E.; Sapp, E. et al. Hydrophobically modified siRNAs silence huntingtin mRNA in primary neurons and mouse brain. Mol. Ther.-Nucl. Acids 2015, 4, e266.CrossRefGoogle Scholar
  115. [115]
    Nikan, M.; Osborn, M. F.; Coles, A. H.; Godinho, B. M. D. C.; Hall, L. M.; Haraszti, R. A.; Hassler, M. R.; Echeverria, D.; Aronin, N.; Khvorova, A. Docosahexaenoic acid conjugation enhances distribution and safety of siRNA upon local administration in mouse brain. Mol. Ther.-Nucl. Acids 2016, 5, e344.CrossRefGoogle Scholar
  116. [116]
    Nair, J. K.; Willoughby, J. L. S.; Chan, A.; Charisse, K.; Alam, M. R.; Wang, Q. F.; Hoekstra, M.; Kandasamy, P.; Kel’in, A. V.; Milstein, S. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 2014, 136, 16958–16961.CrossRefGoogle Scholar
  117. [117]
    Ramanathan, A.; Robb, G. B.; Chan, S. H. mRNA capping: Biological functions and applications. Nucleic Acids Res. 2016, 44, 7511–7526.CrossRefGoogle Scholar
  118. [118]
    Grudzien-Nogalska, E.; Jemielity, J.; Kowalska, J.; Darzynkiewicz, E.; Rhoads, R. E. Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells. RNA 2007, 13, 1745–1755.CrossRefGoogle Scholar
  119. [119]
    Kowalska, J.; Lewdorowicz, M.; Zuberek, J.; Grudzien-Nogalska, E.; Bojarska, E.; Stepinski, J.; Rhoads, R. E.; Darzynkiewicz, E.; Davis, R. E.; Jemielity, J. Synthesis and characterization of mRNA cap analogs containing phosphorothioate substitutions that bind tightly to eIF4E and are resistant to the decapping pyrophosphatase DcpS. RNA 2008, 14, 1119–1131.CrossRefGoogle Scholar
  120. [120]
    Kowalska, J.; Wypijewska del Nogal, A.; Darzynkiewicz, Z. M.; Buck, J.; Nicola, C.; Kuhn, A. N.; Lukaszewicz, M.; Zuberek, J.; Strenkowska, M.; Ziemniak, M. et al. Synthesis, properties, and biological activity of boranophosphate analogs of the mRNA cap: Versatile tools for manipulation of therapeutically relevant cap-dependent processes. Nucleic Acids Res. 2014, 42, 10245–10264.CrossRefGoogle Scholar
  121. [121]
    Karikó, K.; Muramatsu, H.; Welsh, F. A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 2008, 16, 1833–1840.CrossRefGoogle Scholar
  122. [122]
    Kauffman, K. J.; Mir, F. F.; Jhunjhunwala, S.; Kaczmarek, J. C.; Hurtado, J. E.; Yang, J. H.; Webber, M. J.; Kowalski, P. S.; Heartlein, M. W.; DeRosa, F. et al. Efficacy and immunogenicity of unmodified and pseudouridine-modified mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials 2016, 109, 78–87.CrossRefGoogle Scholar
  123. [123]
    Li, B.; Luo, X.; Dong, Y. Z. Effects of chemically modified messenger RNA on protein expression. Bioconjugate Chem. 2016, 27, 849–853.CrossRefGoogle Scholar
  124. [124]
    Svitkin, Y. V.; Cheng, Y. M.; Chakraborty, T.; Presnyak, V.; John, M.; Sonenberg, N. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 2017, 45, 6023–6036.CrossRefGoogle Scholar
  125. [125]
    Anderson, B. R.; Muramatsu, H.; Nallagatla, S. R.; Bevilacqua, P. C.; Sansing, L. H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010, 38, 5884–5892.CrossRefGoogle Scholar
  126. [126]
    Mauro, V. P.; Chappell, S. A. A critical analysis of codon optimization in human therapeutics. Trends Mol. Med. 2014, 20, 604–613.CrossRefGoogle Scholar
  127. [127]
    Thess, A.; Grund, S.; Mui, B. L.; Hope, M. J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-engineered mRNA without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther. 2015, 23, 1456–1464.CrossRefGoogle Scholar
  128. [128]
    Balmayor, E. R.; Geiger, J. P.; Aneja, M. K.; Berezhanskyy, T.; Utzinger, M.; Mykhaylyk, O.; Rudolph, C.; Plank, C. Chemically modified RNA induces osteogenesis of stem cells and human tissue explants as well as accelerates bone healing in rats. Biomaterials 2016, 87, 131–146.CrossRefGoogle Scholar
  129. [129]
    Cheng, X. W.; Lee, R. J. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery. Adv. Drug Deliver. Rev. 2016, 99, 129–137.CrossRefGoogle Scholar
  130. [130]
    Maurer, N.; Wong, K. F.; Stark, H.; Louie, L.; McIntosh, D.; Wong, T.; Scherrer, P.; Semple, S. C.; Cullis, P. R. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J. 2001, 80, 2310–2326.CrossRefGoogle Scholar
  131. [131]
    Jeffs, L. B.; Palmer, L. R.; Ambegia, E. G.; Giesbrecht, C.; Ewanick, S.; MacLachlan, I. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm. Res. 2005, 22, 362–372.CrossRefGoogle Scholar
  132. [132]
    Belliveau, N. M.; Huft, J.; Lin, P. J. C.; Chen, S.; Leung, A. K. K.; Leaver, T. J.; Wild, A. W.; Lee, J. B.; Taylor, R. J.; Tam, Y. K. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther.-Nucl. Acids 2012, 1, e37.CrossRefGoogle Scholar
  133. [133]
    Leung, A. K. K.; Hafez, I. M.; Baoukina, S.; Belliveau, N. M.; Zhigaltsev, I. V.; Afshinmanesh, E.; Tieleman, D. P.; Hansen, C. L.; Hope, M. J.; Cullis, P. R. Correction to “Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core”. J. Phys. Chem. C 2012, 116, 22104.CrossRefGoogle Scholar
  134. [134]
    Leung, A. K. K.; Tam, Y. Y. C.; Chen, S.; Hafez, I. M.; Cullis, P. R. Microfluidic mixing: A general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B 2015, 119, 8698–8706.CrossRefGoogle Scholar
  135. [135]
    van Meer, G.; Voelker, D. R.; Feigenson, G. W. Membrane lipids: Where they are and how they behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124.CrossRefGoogle Scholar
  136. [136]
    Miller, J. B.; Zhang, S. Y.; Kos, P.; Xiong, H.; Zhou, K. J.; Perelman, S. S.; Zhu, H.; Siegwart, D. J. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem., Int. Ed. 2017, 56, 1059–1063.CrossRefGoogle Scholar
  137. [137]
    Alabi, C. A.; Love, K. T.; Sahay, G.; Yin, H.; Luly, K. M.; Langer, R.; Anderson, D. G. Multiparametric approach for the evaluation of lipid nanoparticles for siRNA delivery. Proc. Natl. Acad. Sci. USA 2013, 110, 12881–12886.CrossRefGoogle Scholar
  138. [138]
    Paunovska, K.; Sago, C. D.; Monaco, C. M.; Hudson, W. H.; Castro, M. G.; Rudoltz, T. G.; Kalathoor, S.; Vanover, D. A.; Santangelo, P. J.; Ahmed, R. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 2018, 18, 2148–2157.CrossRefGoogle Scholar
  139. [139]
    Roberts, L. R. Sorafenib in liver cancer — Just the beginning. New Engl. J. Med. 2008, 359, 420–422.CrossRefGoogle Scholar
  140. [140]
    Scudellari, M. Drug development: Try and try again. Nature 2014, 516, S4–S6.CrossRefGoogle Scholar
  141. [141]
    Tousignant, J. D.; Gates, A. L.; Ingram, L. A.; Johnson, C. L.; Nietupski, J. B.; Cheng, S. H.; Eastman, S. J.; Scheule, R. K. Comprehensive analysis of the acute toxicities induced by systemic administration of cationic lipid: Plasmid DNA complexes in mice. Hum. Gene Ther. 2000, 11, 2493–2513.CrossRefGoogle Scholar
  142. [142]
    Lv, H. T.; Zhang, S. B.; Wang, B.; Cui, S. H.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 2006, 114, 100–109.CrossRefGoogle Scholar
  143. [143]
    Zhang, S. Y.; Zhou, K. J.; Luo, X.; Li, L.; Tu, H. C.; Sehgal, A.; Nguyen, L. H.; Zhang, Y.; Gopal, P.; Tarlow, B. D. et al. The polyploid state plays a tumor-suppressive role in the liver. Dev Cell 2018, 44, 447–459.e5.CrossRefGoogle Scholar
  144. [144]
    Zhang, S. Y.; Nguyen, L. H.; Zhou, K. J.; Tu, H. C.; Sehgal, A.; Nassour, I.; Li, L.; Gopal, P.; Goodman, J.; Singal, A. G. et al. Knockdown of anillin actin binding protein blocks cytokinesis in hepatocytes and reduces liver tumor development in mice without affecting regeneration. Gastroenterology 2018, 154, 1421–1434.CrossRefGoogle Scholar
  145. [145]
    Whitehead, K. A.; Dorkin, J. R.; Vegas, A. J.; Chang, P. H.; Veiseh, O.; Matthews, J.; Fenton, O. S.; Zhang, Y. L.; Olejnik, K. T.; Yesilyurt, V. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 2014, 5, 4277.CrossRefGoogle Scholar
  146. [146]
    Akinc, A.; Querbes, W.; De, S.; Qin, J.; Frank-Kamenetsky, M.; Jayaprakash, K. N.; Jayaraman, M.; Rajeev, K. G.; Cantley, W. L.; Dorkin, J. R. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther. 2010, 18, 1357–1364.CrossRefGoogle Scholar
  147. [147]
    Adams, D.; Suhr, O. B.; Dyck, P. J.; Litchy, W. J.; Leahy, R. G.; Chen, J. H.; Gollob, J.; Coelho, T. Trial design and rationale for APOLLO, a Phase 3, placebo-controlled study of patisiran in patients with hereditary ATTR amyloidosis with polyneuropathy. BMC Neurol. 2017, 17, 181.CrossRefGoogle Scholar
  148. [148]
    Coelho, T.; Adams, D.; Silva, A.; Lozeron, P.; Hawkins, P. N.; Mant, T.; Perez, J.; Chiesa, J.; Warrington, S.; Tranter, E. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. New Engl. J. Med. 2013, 369, 819–829.CrossRefGoogle Scholar
  149. [149]
    Heyes, J.; Palmer, L.; Bremner, K.; MacLachlan, I. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J. Control. Release 2005, 107, 276–287.CrossRefGoogle Scholar
  150. [150]
    Santel, A.; Aleku, M.; Keil, O.; Endruschat, J.; Esche, V.; Fisch, G.; Dames, S.; Löffler, K.; Fechtner, M.; Arnold, W. et al. A novel siRNA-lipoplex technology for RNA interference in the mouse vascular endothelium. Gene Ther. 2006, 13, 1222–1234.CrossRefGoogle Scholar
  151. [151]
    Adami, R. C.; Seth, S.; Harvie, P.; Johns, R.; Fam, R.; Fosnaugh, K.; Zhu, T. Y.; Farber, K.; McCutcheon, M.; Goodman, T. T. et al. An amino acid-based amphoteric liposomal delivery system for systemic administration of siRNA. Mol. Ther. 2011, 19, 1141–1151.CrossRefGoogle Scholar
  152. [152]
    Bader, A. G. miR-34–a microRNA replacement therapy is headed to the clinic. Front. Genet. 2012, 3, 120.CrossRefGoogle Scholar
  153. [153]
    Sato, Y.; Murase, K.; Kato, J.; Kobune, M.; Sato, T.; Kawano, Y.; Takimoto, R.; Takada, K.; Miyanishi, K.; Matsunaga, T. et al. Resolution of liver cirrhosis using vitamin A–coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol. 2008, 26, 431–442.CrossRefGoogle Scholar
  154. [154]
    Kohli, A. G.; Kierstead, P. H.; Venditto, V. J.; Walsh, C. L.; Szoka, F. C. Designer lipids for drug delivery: From heads to tails. J. Control. Release 2014, 190, 274–287.CrossRefGoogle Scholar
  155. [155]
    Miller, J. B.; Kos, P.; Tieu, V.; Zhou, K. J.; Siegwart, D. J. Development of cationic quaternary ammonium sulfonamide amino lipids for nucleic acid delivery. ACS Appl. Mater. Interfaces 2018, 10, 2302–2311.CrossRefGoogle Scholar
  156. [156]
    Bohdanowicz, M.; Grinstein, S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiol. Rev. 2013, 93, 69–106.CrossRefGoogle Scholar
  157. [157]
    Shao, Q.; Jiang, S. Y. Molecular understanding and design of zwitterionic materials. Adv. Mater. 2015, 27, 15–26.CrossRefGoogle Scholar
  158. [158]
    Kim, S. T.; Saha, K.; Kim, C.; Rotello, V. M. The role of surface functionality in determining nanoparticle cytotoxicity. Acc. Chem. Res. 2013, 46, 681–691.CrossRefGoogle Scholar
  159. [159]
    Kim, G.; Park, S.; Jung, J.; Heo, K.; Yoon, J.; Kim, H.; Kim, I. J.; Kim, J. R.; Lee, J. I.; Ree, M. Novel brush polymers with phosphorylcholine bristle ends: Synthesis, structure, properties, and biocompatibility. Adv. Funct. Mater. 2009, 19, 1631–1644.CrossRefGoogle Scholar
  160. [160]
    Venditto, V. J.; Dolor, A.; Kohli, A.; Salentinig, S.; Boyd, B. J.; Szoka, F. C. Sulfated quaternary amine lipids: A new class of inverse charge zwitterlipids. Chem. Commun. 2014, 50, 9109–9111.CrossRefGoogle Scholar
  161. [161]
    Walsh, C. L.; Nguyen, J.; Szoka, F. C. Synthesis and characterization of novel zwitterionic lipids with pHresponsive biophysical properties. Chem. Commun. 2012, 48, 5575–5577.CrossRefGoogle Scholar
  162. [162]
    Lorenzer, C.; Dirin, M.; Winkler, A. M.; Baumann, V.; Winkler, J. Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics. J. Control. Release 2015, 203, 1–15.CrossRefGoogle Scholar
  163. [163]
    Dahlman, J. E.; Barnes, C.; Khan, O. F.; Thiriot, A.; Jhunjunwala, S.; Shaw, T. E.; Xing, Y. P.; Sager, H. B.; Sahay, G.; Speciner, L. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 2014, 9, 648–655.CrossRefGoogle Scholar
  164. [164]
    Choi, H. S.; Ashitate, Y.; Lee, J. H.; Kim, S. H.; Matsui, A.; Insin, N.; Bawendi, M. G.; Semmler-Behnke, M.; Frangioni, J. V.; Tsuda, A. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 2010, 28, 1300–1303.CrossRefGoogle Scholar
  165. [165]
    Davis, M. E.; Zuckerman, J. E.; Choi, C. H. J.; Seligson, D.; Tolcher, A.; Alabi, C. A.; Yen, Y.; Heidel, J. D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070.CrossRefGoogle Scholar
  166. [166]
    Zuckerman, J. E.; Gritli, I.; Tolcher, A.; Heidel, J. D.; Lim, D.; Morgan, R.; Chmielowski, B.; Ribas, A.; Davis, M. E.; Yen, Y. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc. Natl. Acad. Sci. USA 2014, 111, 11449–11454.CrossRefGoogle Scholar
  167. [167]
    Rozema, D. B.; Lewis, D. L.; Wakefield, D. H.; Wong, S. C.; Klein, J. J.; Roesch, P. L.; Bertin, S. L.; Reppen, T. W.; Chu, Q. L.; Blokhin, A. V. et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 12982–12987.CrossRefGoogle Scholar
  168. [168]
    Wakefield, D. H.; Klein, J. J.; Wolff, J. A.; Rozema, D. B. Membrane activity and transfection ability of amphipathic polycations as a function of alkyl group size. Bioconjugate Chem. 2005, 16, 1204–1208.CrossRefGoogle Scholar
  169. [169]
    Parmar, R. G.; Busuek, M.; Walsh, E. S.; Leander, K. R.; Howell, B. J.; Sepp-Lorenzino, L.; Kemp, E.; Crocker, L. S.; Leone, A.; Kochansky, C. J. et al. Endosomolytic bioreducible poly(amido amine disulfide) polymer conjugates for the in vivo systemic delivery of siRNA therapeutics. Bioconjugate Chem. 2013, 24, 640–647.CrossRefGoogle Scholar
  170. [170]
    Parmar, R. G.; Poslusney, M.; Busuek, M.; Williams, J. M.; Garbaccio, R.; Leander, K.; Walsh, E.; Howell, B.; Sepp-Lorenzino, L.; Riley, S. et al. Novel endosomolytic poly(amido amine) polymer conjugates for systemic delivery of siRNA to hepatocytes in rodents and nonhuman primates. Bioconjugate Chem. 2014, 25, 896–906.CrossRefGoogle Scholar
  171. [171]
    Wooddell, C. I.; Yuen, M. F.; Chan, H. L. Y.; Gish, R. G.; Locarnini, S. A.; Chavez, D.; Ferrari, C.; Given, B. D.; Hamilton, J.; Kanner, S. B. et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl. Med. 2017, 9, eaan0241.CrossRefGoogle Scholar
  172. [172]
    McKinlay, C. J.; Vargas, J. R.; Blake, T. R.; Hardy, J. W.; Kanada, M.; Contag, C. H.; Wender, P. A.; Waymouth, R. M. Charge-altering releasable transporters (CARTs) for the delivery and release of mRNA in living animals. Proc. Natl. Acad. Sci. USA 2017, 114, E448–E456.CrossRefGoogle Scholar
  173. [173]
    Zorde Khvalevsky, E.; Gabai, R.; Rachmut, I. H.; Horwitz, E.; Brunschwig, Z.; Orbach, A.; Shemi, A.; Golan, T.; Domb, A. J.; Yavin, E. et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc. Natl. Acad. Sci. USA 2013, 110, 20723–20728.CrossRefGoogle Scholar
  174. [174]
    Dong, Y. Z.; Dorkin, J. R.; Wang, W. H.; Chang, P. H.; Webber, M. J.; Tang, B. C.; Yang, J.; Abutbul-Ionita, I.; Danino, D.; DeRosa, F. et al. Poly(glycoamidoamine) brushes formulated nanomaterials for systemic siRNA and mRNA delivery in vivo. Nano Lett. 2016, 16, 842–848.CrossRefGoogle Scholar
  175. [175]
    Yang, X. Z.; Dou, S.; Sun, T. M.; Mao, C. Q.; Wang, H. X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release 2011, 156, 203–211.CrossRefGoogle Scholar
  176. [176]
    Yang, X. Z.; Dou, S.; Wang, Y. C.; Long, H. Y.; Xiong, M. H.; Mao, C. Q.; Yao, Y. D.; Wang, J. Single-step assembly of cationic lipid–polymer hybrid nanoparticles for systemic delivery of siRNA. ACS Nano 2012, 6, 4955–4965.CrossRefGoogle Scholar
  177. [177]
    Lv, S. J.; Wang, J.; Dou, S.; Yang, X. Z.; Ni, X.; Sun, R.; Tian, Z. G.; Wei, H. M. Nanoparticles encapsulating hepatitis B virus cytosine-phosphate-guanosine induce therapeutic immunity against HBV infection. Hepatology 2014, 59, 385–394.CrossRefGoogle Scholar
  178. [178]
    Luo, Y. L.; Xu, C. F.; Li, H. J.; Cao, Z. T.; Liu, J.; Wang, J. L.; Du, X. J.; Yang, X. Z.; Gu, Z.; Wang, J. Macrophagespecific in vivo gene editing using cationic lipid-assisted polymeric nanoparticles. ACS Nano 2018, 12, 994–1005.CrossRefGoogle Scholar
  179. [179]
    Shi, J. J.; Xiao, Z. Y.; Votruba Alexander, R.; Vilos, C.; Farokhzad Omid, C. Differentially charged hollow core/shell lipid–polymer–lipid hybrid nanoparticles for small interfering RNA delivery. Angew. Chem., Int. Ed. 2011, 50, 7027–7031.CrossRefGoogle Scholar
  180. [180]
    Xu, X. Y.; Xie, K.; Zhang, X. Q.; Pridgen, E. M.; Park, G. Y.; Cui, D. S.; Shi, J. J.; Wu, J.; Kantoff, P. W.; Lippard, S. J. et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. USA 2013, 110, 18638–18643.CrossRefGoogle Scholar
  181. [181]
    Lynn, D. M.; Anderson, D. G.; Putnam, D.; Langer, R. Accelerated discovery of synthetic transfection vectors: Parallel synthesis and screening of a degradable polymer library. J. Am. Chem. Soc. 2001, 123, 8155–8156.CrossRefGoogle Scholar
  182. [182]
    Green, J. J.; Langer, R.; Anderson, D. G. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 2008, 41, 749–759.CrossRefGoogle Scholar
  183. [183]
    Kozielski, K. L.; Tzeng, S. Y.; Green, J. J. A bioreducible linear poly(β-amino ester) for siRNA delivery. Chem. Commun. 2013, 49, 5319–5321.CrossRefGoogle Scholar
  184. [184]
    Kozielski, K. L.; Tzeng, S. Y.; Hurtado De Mendoza, B. A.; Green, J. J. Bioreducible cationic polymer-based nanoparticles for efficient and environmentally triggered cytoplasmic siRNA delivery to primary human brain cancer cells. ACS Nano 2014, 8, 3232–3241.CrossRefGoogle Scholar
  185. [185]
    Kaczmarek, J. C.; Patel, A. K.; Kauffman, K. J.; Fenton, O. S.; Webber, M. J.; Heartlein, M. W.; DeRosa, F.; Anderson, D. G. Polymer-lipid nanoparticles for systemic delivery of mRNA to the lungs. Angew. Chem., Int. Ed. 2016, 55, 13808–13812.CrossRefGoogle Scholar
  186. [186]
    Su, X. F.; Fricke, J.; Kavanagh, D. G.; Irvine, D. J. In vitro and in vivo mRNA delivery using lipid-enveloped pH-responsive polymer nanoparticles. Mol. Pharmaceutics 2011, 8, 774–787.CrossRefGoogle Scholar
  187. [187]
    Hao, J.; Elkassih, S.; Siegwart, D. J. Progress towards the synthesis of amino polyesters via ring-opening polymerization (ROP) of functional lactones. Synlett 2016, 27, 2285–2292.CrossRefGoogle Scholar
  188. [188]
    Hao, J.; Kos, P.; Zhou, K. J.; Miller, J. B.; Xue, L.; Yan, Y. F.; Xiong, H.; Elkassih, S.; Siegwart, D. J. Rapid synthesis of a lipocationic polyester library via ring-opening polymerization of functional valerolactones for efficacious siRNA delivery. J. Am. Chem. Soc. 2015, 137, 9206–9209.CrossRefGoogle Scholar
  189. [189]
    Yan, Y. F.; Liu, L.; Xiong, H.; Miller, J. B.; Zhou, K. J.; Kos, P.; Huffman, K. E.; Elkassih, S.; Norman, J. W.; Carstens, R. et al. Functional polyesters enable selective siRNA delivery to lung cancer over matched normal cells. Proc. Natl. Acad. Sci. USA 2016, 113, E5702–E5710.CrossRefGoogle Scholar
  190. [190]
    Yan, Y. F.; Xue, L.; Miller, J. B.; Zhou, K. J.; Kos, P.; Elkassih, S.; Liu, L.; Nagai, A.; Xiong, H.; Siegwart, D. J. One-pot synthesis of functional poly(amino ester sulfide)s and utility in delivering pDNA and siRNA. Polymer 2015, 72, 271–280.CrossRefGoogle Scholar
  191. [191]
    Yan, Y. F.; Siegwart, D. J. Scalable synthesis and derivation of functional polyesters bearing ene and epoxide side chains. Polym. Chem. 2014, 5, 1362–1371.CrossRefGoogle Scholar
  192. [192]
    Yan, Y. F.; Xiong, H.; Zhang, X. Y.; Cheng, Q.; Siegwart, D. J. Systemic mRNA delivery to the lungs by functional polyester-based carriers. Biomacromolecules 2017, 18, 4307–4315.CrossRefGoogle Scholar
  193. [193]
    Zangi, L.; Lui, K. O.; von Gise, A.; Ma, Q.; Ebina, W.; Ptaszek, L. M.; Später, D.; Xu, H. S.; Tabebordbar, M.; Gorbatov, R. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 2013, 31, 898–907.CrossRefGoogle Scholar
  194. [194]
    Kauffman, K. J.; Dorkin, J. R.; Yang, J. H.; Heartlein, M. W.; DeRosa, F.; Mir, F. F.; Fenton, O. S.; Anderson, D. G. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 2015, 15, 7300–7306.CrossRefGoogle Scholar
  195. [195]
    Yin, H.; Song, C.-Q.; Dorkin, J. R.; Zhu, L. J.; Li, Y. X.; Wu, Q. Q.; Park, A.; Yang, J.; Suresh, S.; Bizhanova, A. et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 2016, 34, 328–333.CrossRefGoogle Scholar
  196. [196]
    Yin, H.; Song, C.-Q.; Suresh, S.; Wu, Q. Q.; Walsh, S.; Rhym, L. H.; Mintzer, E.; Bolukbasi, M. F.; Zhu, L. J.; Kauffman, K. et al. Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 2017, 35, 1179–1187.CrossRefGoogle Scholar
  197. [197]
    Li, B.; Luo, X.; Deng, B. B.; Wang, J. F.; McComb, D. W.; Shi, Y. M.; Gaensler, K. M. L.; Tan, X.; Dunn, A. L.; Kerlin, B. A. et al. An orthogonal array optimization of lipid-like nanoparticles for mRNA delivery in vivo. Nano Lett. 2015, 15, 8099–8107.CrossRefGoogle Scholar
  198. [198]
    Fenton, O. S.; Kauffman, K. J.; McClellan, R. L.; Appel, E. A.; Dorkin, J. R.; Tibbitt, M. W.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Bioinspired alkenyl amino alcohol ionizable lipid materials for highly potent in vivo mRNA delivery. Adv. Mater. 2016, 28, 2939–2943.CrossRefGoogle Scholar
  199. [199]
    Fenton, O. S.; Kauffman, K. J.; Kaczmarek, J. C.; McClellan, R. L.; Jhunjhunwala, S.; Tibbitt, M. W.; Zeng, M. D.; Appel, E. A.; Dorkin, J. R.; Mir, F. F. et al. Synthesis and biological evaluation of ionizable lipid materials for the in vivo delivery of messenger RNA to B lymphocytes. Adv. Mater. 2017, 29, 1606944.CrossRefGoogle Scholar
  200. [200]
    Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A non-viral CRISPR/Cas9 delivery system for therapeutically targeting HBV DNA and pcsk9 in vivo. Cell Res. 2017, 27, 440–443.CrossRefGoogle Scholar
  201. [201]
    Li, B.; Luo, X.; Deng, B. B.; Giancola, J. B.; McComb, D. W.; Schmittgen, T. D.; Dong, Y. Z. Effects of local structural transformation of lipid-like compounds on delivery of messenger RNA. Sci. Rep. 2016, 6, 22137.CrossRefGoogle Scholar
  202. [202]
    Dong, Y. Z.; Eltoukhy, A. A.; Alabi, C. A.; Khan, O. F.; Veiseh, O.; Dorkin, J. R.; Sirirungruang, S.; Yin, H.; Tang, B. C.; Pelet, J. M. et al. Lipid-like nanomaterials for simultaneous gene expression and silencing in vivo. Adv. Healthcare Mater. 2014, 3, 1392–1397.CrossRefGoogle Scholar
  203. [203]
    Jarzębińska, A.; Pasewald, T.; Lambrecht, J.; Mykhaylyk, O.; Kümmerling, L.; Beck, P.; Hasenpusch, G.; Rudolph, C.; Plank, C.; Dohmen, C. A single methylene group in oligoalkylamine-based cationic polymers and lipids promotes enhanced mRNA delivery. Angew. Chem., Int. Ed. 2016, 55, 9591–9595.CrossRefGoogle Scholar
  204. [204]
    Benenato, K. E.; Kumarasinghe, E. S.; Cornebise, M. Compounds and compositions for intracellular delivery of therapeutic agents: US Patent 20170210697. 2017-07-27.Google Scholar
  205. [205]
    Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable Dual-RNA-Guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821.CrossRefGoogle Scholar
  206. [206]
    Cong, L.; Ran, F. A.; Cox, D.; Lin, S. L.; Barretto, R.; Habib, N.; Hsu, P. D.; Wu, X. B.; Jiang, W. Y.; Marraffini, L. A. et al. Multiplex genome engineering using CRISPR/cas systems. Science 2013, 339, 819–823.CrossRefGoogle Scholar
  207. [207]
    Mali, P.; Yang, L. H.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.; Norville, J. E.; Church, G. M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826.CrossRefGoogle Scholar
  208. [208]
    Sanchez-Rivera, F. J.; Jacks, T. Applications of the CRISPR-Cas9 system in cancer biology. Nat. Rev. Cancer 2015, 15, 387–395.CrossRefGoogle Scholar
  209. [209]
    Doudna, J. A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096.CrossRefGoogle Scholar
  210. [210]
    Ran, F. A.; Hsu, P. D.; Wright, J.; Agarwala, V.; Scott, D. A.; Zhang, F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013, 8, 2281–2308.CrossRefGoogle Scholar
  211. [211]
    Sternberg, S. H.; Redding, S.; Jinek, M.; Greene, E. C.; Doudna, J. A. DNA interrogation by the CRISPR RNAguided endonuclease Cas9. Nature 2014, 507, 62–67.CrossRefGoogle Scholar
  212. [212]
    Davis, A. J.; Chen, D. J. DNA double strand break repair via non-homologous end-joining. Trans. Cancer Res. 2013, 2, 130–143.Google Scholar
  213. [213]
    Richardson, C. D.; Ray, G. J.; DeWitt, M. A.; Curie, G. L.; Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 2016, 34, 339–344.CrossRefGoogle Scholar
  214. [214]
    Platt, R. J.; Chen, S. D.; Zhou, Y.; Yim, M. J.; Swiech, L.; Kempton, H. R.; Dahlman, J. E.; Parnas, O.; Eisenhaure, T. M.; Jovanovic, M. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 2014, 159, 440–455.CrossRefGoogle Scholar
  215. [215]
    Xue, W.; Chen, S. D.; Yin, H.; Tammela, T.; Papagiannakopoulos, T.; Joshi, N. S.; Cai, W. X.; Yang, G.; Bronson, R.; Crowley, D. G. et al. CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 2014, 514, 380–384.CrossRefGoogle Scholar
  216. [216]
    Yin, H.; Xue, W.; Chen, S. D.; Bogorad, R. L.; Benedetti, E.; Grompe, M.; Koteliansky, V.; Sharp, P. A.; Jacks, T.; Anderson, D. G. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 2014, 32, 551–553.CrossRefGoogle Scholar
  217. [217]
    Chen, S. D.; Sanjana, N. E.; Zheng, K. J.; Shalem, O.; Lee, K.; Shi, X.; Scott, D. A.; Song, J.; Pan, J. Q.; Weissleder, R. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 2015, 160, 1246–1260.CrossRefGoogle Scholar
  218. [218]
    Zetsche, B.; Gootenberg, J. S.; Abudayyeh, O. O.; Slaymaker, I. M.; Makarova, K. S.; Essletzbichler, P.; Volz, S. E.; Joung, J.; van der Oost, J.; Regev, A. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system. Cell 2015, 163, 759–771.CrossRefGoogle Scholar
  219. [219]
    Komor, A. C.; Kim, Y. B.; Packer, M. S.; Zuris, J. A.; Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016, 533, 420–424.CrossRefGoogle Scholar
  220. [220]
    Komor, A. C.; Zhao, K. T.; Packer, M. S.; Gaudelli, N. M.; Waterbury, A. L.; Koblan, L. W.; Kim, Y. B.; Badran, A. H.; Liu, D. R. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 2017, 3, eaan4774.CrossRefGoogle Scholar
  221. [221]
    Hu, J. H.; Miller, S. M.; Geurts, M. H.; Tang, W. X.; Chen, L. W.; Sun, N.; Zeina, C. M.; Gao, X.; Rees, H. A.; Lin, Z. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018, 556, 57–63.CrossRefGoogle Scholar
  222. [222]
    Han, X.; Liu, Z. B.; Jo, M. C.; Zhang, K.; Li, Y.; Zeng, Z. H.; Li, N.; Zu, Y. L.; Qin, L. D. CRISPR-Cas9 delivery to hard-to-transfect cells via membrane deformation. Sci. Adv. 2015, 1, e1500454.CrossRefGoogle Scholar
  223. [223]
    Zuris, J. A.; Thompson, D. B.; Shu, Y. L.; Guilinger, J. P.; Bessen, J. L.; Hu, J. H.; Maeder, M. L.; Joung, J. K.; Chen, Z. Y.; Liu, D. R. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 2015, 33, 73–80.CrossRefGoogle Scholar
  224. [224]
    Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2016, 113, 2868–2873.CrossRefGoogle Scholar
  225. [225]
    Sun, W. J.; Ji, W. Y.; Hall, J. M.; Hu, Q. Y.; Wang, C.; Beisel, C. L.; Gu, Z. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew. Chem., Int. Ed. 2015, 54, 12029–12033.CrossRefGoogle Scholar
  226. [226]
    Wang, M.; Glass, Z. A.; Xu, Q. Non-viral delivery of genome-editing nucleases for gene therapy. Gene Ther. 2017, 24, 144–150.CrossRefGoogle Scholar
  227. [227]
    Nishimasu, H.; Ran, F. A.; Hsu, P. D.; Konermann, S.; Shehata, S. I.; Dohmae, N.; Ishitani, R.; Zhang, F.; Nureki, O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 2014, 156, 935–949.CrossRefGoogle Scholar
  228. [228]
    Morrissey, D. V.; Patel, M. C.; Finn, J. D.; Smith, A. M. R.; Shaw, L. J.; Dombrowski, C.; Shah, R. R. Lipid nanoparticle formulations for CRISPR/Cas components: US Patent Application PCT/US2017/024973. 2017-03-30.Google Scholar
  229. [229]
    Finn, J. D.; Smith, A. R.; Patel, M. C.; Shaw, L.; Youniss, M. R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 2018, 22, 2227–2235.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations