Advertisement

Nano Research

, Volume 11, Issue 9, pp 4914–4922 | Cite as

Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation

  • Zahir Muhammad
  • Kejun Mu
  • Haifeng Lv
  • Chuanqiang Wu
  • Zia ur Rehman
  • Muhammad Habib
  • Zhe Sun
  • Xiaojun Wu
  • Li Song
Research Article
  • 236 Downloads

Abstract

Atomic intercalation in two-dimensional (2D) layered materials can be used to engineer the electronic structure at the atomic scale and generate tuneable physical and chemical properties which are quite distinct in comparison with the pristine material. Among them, electron-doped engineering induced by intercalation is an efficient route to modulate electronic states in 2D layers. Herein, we demonstrate a semiconducting to metallic phase transition in zirconium diselenide (ZrSe2) single crystals via controllable incorporation of copper (Cu) atoms. Our angle resolved photoemission spectroscopy (ARPES) measurements and first-principles density functional theory (DFT) calculations clearly revealed the emergence of conduction band dispersion at the M/L point of the Brillouin zone due to Cu-induced electron doping in ZrSe2 interlayers. Moreover, electrical measurements in ZrSe2 revealed semiconducting behavior, while the Cu-intercalated ZrSe2 exhibited a linear current–voltage curve with metallic character. The atomic intercalation approach may have high potential for realizing transparent electron-doping systems for many specific 2D-based nanoelectronic applications.

Keywords

layered materials phase transition angle resolved photoemission spectroscopy electron doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the MOST (Nos. 2017YFA0303500, 2017YFA0402901, 2016YFA0200602, 2014CB848900, and 2014CB921102), National Natural Science Foundation of China (Nos. U1532112, U1532136, 11574280, and 11190022), CAS Key Research Program of Frontier Sciences (No. QYZDB-SSW-SLH018) and CAS Interdisciplinary Innovation Team. Z. M. acknowledges the CSC (Chinese Scholarship Council) Program. L. S. acknowledges the support from Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University (111 project, B12015), and Key Laboratory of the Ministry of Education for Advanced Catalysis Materials and Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces (Zhejiang Normal University). We thanks the Hefei Synchrotron Radiation Facility (Angle Resolved Photoemission Spectroscopy, MCD and Photoemission Endstations, NSRL), and the USTC Center for Micro and Nanoscale Research and Fabrication for helps in characterizations.

Supplementary material

12274_2018_2081_MOESM1_ESM.pdf (1.8 mb)
Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation

References

  1. [1]
    Balendhran, S.; Walia, S.; Nili, H.; Ou, J. Z.; Zhuiykov, S.; Kaner, R. B.; Sriram, S.; Bhaskaran, M.; Kalantar-Zadeh, K. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952–3970.CrossRefGoogle Scholar
  2. [2]
    Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F. et al. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 2013, 7, 2898–2926.CrossRefGoogle Scholar
  3. [3]
    Tan, C. L.; Zhang, H. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 2015, 44, 2713–2731.CrossRefGoogle Scholar
  4. [4]
    Xia, F. N.; Wang, H.; Xiao, D.; Dubey, M.; Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 2014, 8, 899–907.CrossRefGoogle Scholar
  5. [5]
    Wang, X. T.; Huang, L.; Jiang, X.-W.; Li, Y.; Wei, Z. M.; Li, J. B. Large scale ZrSe2 atomically thin layers. J. Mater. Chem. C 2016, 4, 3143–3148.CrossRefGoogle Scholar
  6. [6]
    Zhang, M.; Zhu, Y. M.; Wang, X. S.; Feng, Q. L.; Qiao, S. L.; Wen, W.; Chen, Y. F.; Cui, M. H.; Zhang, J.; Cai, C. Z. et al. Controlled synthesis of ZrSe2 monolayer and few layers on hexagonal boron nitride. J. Am. Chem. Soc. 2015, 137, 7051–7054.CrossRefGoogle Scholar
  7. [7]
    Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V. R. et al. Recent advances in two-dimensional materials beyond graphene. ACS Nano 2015, 9, 11509–11539.CrossRefGoogle Scholar
  8. [8]
    Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.CrossRefGoogle Scholar
  9. [9]
    Kumar, A.; Ahluwalia, P. K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B 2012, 85, 186.CrossRefGoogle Scholar
  10. [10]
    Ellis, J. K.; Lucero, M. J.; Scuseria, G. E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett. 2011, 99, 261908.CrossRefGoogle Scholar
  11. [11]
    Zhang, Y.; Chang, T.-R.; Zhou, B.; Cui, Y.-T.; Yan, H.; Liu, Z. K.; Schmitt, F.; Lee, J.; Moore, R.; Chen, Y. L. et al. Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe2. Nat. Nanotechnol. 2014, 9, 111–115.CrossRefGoogle Scholar
  12. [12]
    Jin, W. C.; Yeh, P.-C.; Zaki, N.; Zhang, D. T.; Sadowski, J. T.; Al-Mahboob, A.; van Der Zande, A. M.; Chenet, D. A.; Dadap, J. I.; Herman, I. P. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 2013, 111, 106801.CrossRefGoogle Scholar
  13. [13]
    Roldán, R.; Silva-Guillén, J. A.; López-Sancho, M. P.; Guinea, F.; Cappelluti, E.; Ordejón, P. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Annalen der Physik 2014, 526, 347–357.CrossRefGoogle Scholar
  14. [14]
    Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spinorbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402.CrossRefGoogle Scholar
  15. [15]
    Sun, L. F.; Yan, J. X.; Zhan, D.; Liu, L.; Hu, H. L.; Li, H.; Tay, B. K.; Kuo, J.-L.; Huang, C.-C.; Hewak, D. W. et al. Spin-orbit splitting in single-layer MoS2 revealed by triply resonant Raman scattering. Phys. Rev. Lett. 2013, 111, 126801.CrossRefGoogle Scholar
  16. [16]
    Alidoust, N.; Bian, G.; Xu, S.-Y.; Sankar, R.; Neupane, M.; Liu, C.; Belopolski, I.; Qu, D.-X.; Denlinger, J. D.; Chou, F.-C. et al. Observation of monolayer valence band spin-orbit effect and induced quantum well states in MoX2. Nat. Commun. 2014, 5, 4673.CrossRefGoogle Scholar
  17. [17]
    Miwa, J. A.; Ulstrup, S.; Sørensen, S. G.; Dendzik, M.; Čabo, A. G.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P. Electronic structure of epitaxial single-layer MoS2. Phys. Rev. Lett. 2015, 114, 046802.CrossRefGoogle Scholar
  18. [18]
    Riley, J. M.; Mazzola, F.; Dendzik, M.; Michiardi, M.; Takayama, T.; Bawden, L.; Granerød, C.; Leandersson, M.; Balasubramanian, T.; Hoesch, M. et al. Direct observation of spin-polarized bulk bands in an inversion-symmetric semiconductor. Nat. Phys. 2014, 10, 835–839.CrossRefGoogle Scholar
  19. [19]
    Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.CrossRefGoogle Scholar
  20. [20]
    Xiao, D.; Liu, G.-B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.CrossRefGoogle Scholar
  21. [21]
    Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.CrossRefGoogle Scholar
  22. [22]
    Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Nat. Sci. Rev. 2015, 2, 57–70.CrossRefGoogle Scholar
  23. [23]
    Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.CrossRefGoogle Scholar
  24. [24]
    Komsa, H.-P.; Krasheninnikov, A. V. Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles. Phys. Rev. B 2012, 86, 241201.CrossRefGoogle Scholar
  25. [25]
    Ugeda, M. M.; Bradley, A. J.; Shi, S.-F.; da Jornada, F. H.; Zhang, Y.; Qiu, D. Y.; Ruan, W.; Mo, S.-K.; Hussain, Z.; Shen, Z.-X. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 2014, 13, 1091–1095.CrossRefGoogle Scholar
  26. [26]
    Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805.CrossRefGoogle Scholar
  27. [27]
    Rybkin, A. G.; Rybkina, A. A.; Otrokov, M. M.; Vilkov, O. Y.; Klimovskikh, I. I.; Petukhov, A. E.; Filianina, M. V.; Voroshnin, V. Y.; Rusinov, I. P.; Ernst, A. et al. Magnetospin-orbit graphene: Interplay between exchange and spin-orbit couplings. Nano Lett. 2018, 18, 1564–1574.CrossRefGoogle Scholar
  28. [28]
    Späh, R.; Elrod, U.; Lux-Steiner, M.; Bucher, E.; Wagner, S. pn junctions in tungsten diselenide. Appl. Phys. Lett. 1983, 43, 79–81.CrossRefGoogle Scholar
  29. [29]
    Podzorov, V.; Gershenson, M. E.; Kloc, C.; Zeis, R.; Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301–3303.CrossRefGoogle Scholar
  30. [30]
    Gan, W.; Han, N. N.; Yang, C.; Wu, P.; Liu, Q.; Zhu, W.; Chen, S. M.; Wu, C. Q.; Habib, M.; Sang, Y. et al. A ternary alloy substrate to synthesize monolayer graphene with liquid carbon precursor. ACS Nano 2017, 11, 1371–1379.CrossRefGoogle Scholar
  31. [31]
    Koenig, S. P.; Doganov, R. A.; Seixas, L.; Carvalho, A.; Tan, J. Y.; Watanabe, K.; Taniguchi, T.; Yakovlev, N.; Castro Neto, A. H.; Özyilmaz, B. Electron doping of ultrathin black phosphorus with Cu Adatoms. Nano Lett. 2016, 16, 2145–2151.CrossRefGoogle Scholar
  32. [32]
    Lee, P. A.; Said, G.; Davis, R.; Lim, T. H. On the optical properties of some layer compounds. J. Phys. Chem. Solids 1969, 30, 2719–2729.CrossRefGoogle Scholar
  33. [33]
    Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y.-J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.CrossRefGoogle Scholar
  34. [34]
    Shi, S.-F.; Wang, F. Two-dimensional materials: Atomically thin p-n junctions. Nat. Nanotechnol. 2014, 9, 664–665.CrossRefGoogle Scholar
  35. [35]
    Niu, T. C.; Li, A. From two-dimensional materials to heterostructures. Prog. Surf. Sci. 2015, 90, 21–45.CrossRefGoogle Scholar
  36. [36]
    Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. D. Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.CrossRefGoogle Scholar
  37. [37]
    Kane, C. L.; Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 2005, 95, 226801.CrossRefGoogle Scholar
  38. [38]
    Lee, D. S.; Riedl, C.; Beringer, T.; Neto, A. C.; von Klitzing, K.; Starke, U.; Smet, J. H. Quantum Hall effect in twisted bilayer graphene. Phys. Rev. Lett. 2011, 107, 216602.CrossRefGoogle Scholar
  39. [39]
    Abanin, D. A.; Pesin, D. A. Interaction-induced topological insulator states in strained graphene. Phys. Rev. Lett. 2012, 109, 066802.CrossRefGoogle Scholar
  40. [40]
    Bao, C. H.; Yao, W.; Wang, E. Y.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Zhou, S. Y. Stacking-dependent electronic structure of trilayer graphene resolved by nanospot angleresolved photoemission spectroscopy. Nano Lett. 2017, 17, 1564–1568.CrossRefGoogle Scholar
  41. [41]
    Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.CrossRefGoogle Scholar
  42. [42]
    Tributsch, H. Photo-intercalation: Possible application in solar energy devices. Appl. Phys. 1980, 23, 61–71.CrossRefGoogle Scholar
  43. [43]
    Wang, Y.-L.; Xu, Y.; Jiang, Y.-P.; Liu, J.-W.; Chang, C.-Z.; Chen, M.; Li, Z.; Song, C.-L.; Wang, L.-L.; He, K. et al. Structural defects and electronic properties of the Cu-doped topological insulator Bi2Se3. Phys. Rev. B 2011, 84, 075335.CrossRefGoogle Scholar
  44. [44]
    Kang, M. G.; Kim, B.; Ryu, S. H.; Jung, S. W.; Kim, J.; Moreschini, L.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Kim, K. S. Universal mechanism of band-gap engineering in transition-metal dichalcogenides. Nano Lett. 2017, 17, 1610–1615.CrossRefGoogle Scholar
  45. [45]
    Ruppert, C.; Aslan, O. B.; Heinz, T. F. Optical properties and band gap of single-and few-layer MoTe2 crystals. Nano Lett. 2014, 14, 6231–6236.CrossRefGoogle Scholar
  46. [46]
    Nair, M. N.; Palacio, I.; Celis, A.; Zobelli, A.; Gloter, A.; Kubsky, S.; Turmaud, J. P.; Conrad, M.; Berger, C.; de Heer, W. et al. Band gap opening induced by the structural periodicity in epitaxial graphene buffer layer. Nano Lett. 2017, 17, 2681–2689.CrossRefGoogle Scholar
  47. [47]
    Zhao, J. F.; Ou, H. W.; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the electronic structure of 1T−CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.CrossRefGoogle Scholar
  48. [48]
    Liu, Q. M.; Ishikawa, R.; Funada, S.; Ohki, T.; Ueno, K.; Shirai, H. Highly efficient solution-processed poly(3,4-ethylenedio-xythiophene):poly(styrenesulfonate)/crystalline–silicon heterojunction solar cells with improved light-induced stability. Adv. Energy Mater. 2015, 5, 1500744.CrossRefGoogle Scholar
  49. [49]
    Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.CrossRefGoogle Scholar
  50. [50]
    Xu, S.-Y.; Xia, Y.; Wray, L. A.; Jia, S.; Meier, F.; Dil, J. H.; Osterwalder, J.; Slomski, B.; Bansil, A.; Lin, H. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 2011, 332, 560–564.CrossRefGoogle Scholar
  51. [51]
    Caputo, M.; Panighel, M.; Lisi, S.; Khalil, L.; Di Santo, G.; Papalazarou, E.; Hruban, A.; Konczykowski, M.; Krusin-Elbaum, L.; Aliev, Z. S. et al. Manipulating the topological interface by molecular adsorbates: Adsorption of Cophthalocyanine on Bi2Se3. Nano Lett. 2016, 16, 3409–3414.CrossRefGoogle Scholar
  52. [52]
    Machado, A. J. S.; Baptista, N. P.; de Lima, B. S.; Chaia, N.; Grant, T. W.; Corrêa, L. E.; Renosto, S. T.; Scaramussa, A. C.; Jardim, R. F.; Torikachvili, M. S. et al. Evidence for topological behavior in superconducting CuxZrTe2−y. Phys. Rev. B 2017, 95, 144505.CrossRefGoogle Scholar
  53. [53]
    Tsipas, P.; Tsoutsou, D.; Fragkos, S.; Sant, R.; Alvarez, C.; Okuno, H.; Renaud, G.; Alcotte, R.; Baron, T.; Dimoulas, A. Massless Dirac fermions in ZrTe2 Semimetal grown on InAs(111) by van der Waals epitaxy. ACS Nano 2018, 12, 1696–1703.CrossRefGoogle Scholar
  54. [54]
    Song, S.; Keum, D. H.; Cho, S.; Perello, D.; Kim, Y.; Lee, Y. H. Room temperature semiconductor–metal transition of MoTe2 thin films engineered by strain. Nano Lett. 2015, 16, 188–193.CrossRefGoogle Scholar
  55. [55]
    Gong, Y. J.; Yuan, H. T.; Wu, C. L.; Tang, P. Z.; Yang, S. Z.; Yang, A. K.; Li, G. D.; Liu, B. F.; van de Groep, J.; Brongersma, M. L. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 2018, 13, 294–299.CrossRefGoogle Scholar
  56. [56]
    Wang, C.; He, Q. Y.; Halim, U.; Liu, Y. Y.; Zhu, E. B.; Lin, Z. Y.; Xiao, H.; Duan, X. D.; Feng, Z. Y.; Cheng, R. et al. Monolayer atomic crystal molecular superlattices. Nature 2018, 555, 231–236.CrossRefGoogle Scholar
  57. [57]
    Rhodes, D.; Chenet, D. A.; Janicek, B. E.; Nyby, C.; Lin, Y.; Jin, W.; Edelberg, D.; Mannebach, E.; Finney, N.; Antony, A. et al. Engineering the structural and electronic phases of MoTe2 through W substitution. Nano Lett. 2017, 17, 1616–1622.CrossRefGoogle Scholar
  58. [58]
    Hashimoto, M.; Vishik, I. M.; He, R.-H.; Devereaux, T. P.; Shen, Z.-X. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys. 2014, 10, 483–495.CrossRefGoogle Scholar
  59. [59]
    Chen, P.; Chan, Y.-H.; Fang, X.-Y.; Zhang, Y.; Chou, M.-Y.; Mo, S.-K.; Hussain, Z.; Fedorov, A.-V.; Chiang, T.-C. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 2015, 6, 8943.CrossRefGoogle Scholar
  60. [60]
    Mo, S.-K. Angle-resolved photoemission spectroscopy for the study of two-dimensional materials. Nano Converg. 2017, 4, 6.CrossRefGoogle Scholar
  61. [61]
    Kuang, M.; Li, T. T.; Chen, H.; Zhang, S. M.; Zhang, L. L.; Zhang, Y. X. Hierarchical Cu2O/CuO/Co3O4 core-shell nanowires: Synthesis and electrochemical properties. Nanotechnology 2015, 26, 304002.CrossRefGoogle Scholar
  62. [62]
    Moustafa, M.; Ghafari, A.; Paulheim, A.; Janowitz, C.; Manzke, R. Spin orbit splitting in the valence bands of ZrSxSe2−x: Angle resolved photoemission and density functional theory. J. Electron Spectrosc. Relat. Phenom. 2013, 189, 35–39.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zahir Muhammad
    • 1
  • Kejun Mu
    • 1
  • Haifeng Lv
    • 2
  • Chuanqiang Wu
    • 1
  • Zia ur Rehman
    • 1
  • Muhammad Habib
    • 1
  • Zhe Sun
    • 1
  • Xiaojun Wu
    • 2
  • Li Song
    • 1
  1. 1.National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Strongly-coupled Quantum Matter PhysicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.CAS Key Laboratory of Materials for Energy Conservation, Synergetic Innovation Centre of Quantum Information & Quantum Physics, CAS Center for Excellence in Nanoscience, and Department of Material Science and EngineeringUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations