Nano Research

, Volume 11, Issue 9, pp 4836–4845 | Cite as

Facet-dependent electro-optical properties of cholesteric liquid crystals doped with Cu2O nanocrystals

  • Dongyu ZhaoEmail author
  • Lihong Xu
  • Yang ShangEmail author
  • Xiaoxia Li
  • Lin GuoEmail author
Research Article


Excellent electro-optical (E-O) performances are essential for high-quality reflective cholesteric liquid crystal (LC) displays, but are often limited by the high driving voltages required by these displays. Dispersing functional nanomaterials into the LCs has emerged as a promising approach to achieve outstanding E-O properties. In this work, we report the facet-controlled E-O properties of a chiral nematic LC (N*LC) doped with cubic, octahedral, and rhombic dodecahedral Cu2O. The outstanding E-O properties of the doped systems are related to the interaction between the liquid crystals and Cu2O dopants with different exposed crystal planes. Doping with octahedral and rhombic dodecahedral Cu2O reduces the stability of the planar state, as a result of both the surface abundance of active Cu atoms that interact with the polarized LC molecules, and the large amounts of vertexes and edges on the crystal surfaces, which accelerate the transition from the planar to the focal conic state under an applied electric field. Rhombic Cu2O is the most effective dopant for improving the E-O properties of the present LCs, resulting in a 65.31% reduction of the threshold voltage. The facet and morphology effects highlighted in this work provide a new pathway to develop excellent energy-saving meso-materials with exposed high-reactivity facets, improving their potential applications in electro-optical technologies and information displays.


Cu2O nanocrystals liquid crystals electro-optical properties host-guest systems facet-dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (Nos. 51673008, 51203005, and 21601009).

Supplementary material

12274_2018_2072_MOESM1_ESM.pdf (1.9 mb)
Facet-dependent electro-optical properties of cholesteric liquid crystals doped with Cu2O nanocrystals


  1. [1]
    Bisoyi, H. K.; Kumar, S. Liquid-crystal nanoscience: An emerging avenue of soft self-assembly. Chem. Soc. Rev. 2011, 40, 306–319.CrossRefGoogle Scholar
  2. [2]
    Stamatoiu, O.; Mirzaei, J.; Feng, X.; Hegmann, T. Nanoparticles in liquid crystals and liquid crystalline nanoparticles. In Liquid Crystals. Tschierske, C., Ed.; Springer: Berlin, Heidelberg, 2012, 331–394.Google Scholar
  3. [3]
    Gutierrez-Cuevas, K. G.; Wang, L.; Zheng, Z. G.; Bisoyi, H. K.; Li, G. Q.; Tan, L. S.; Vaia, R. A.; Li, Q. Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles. Angew. Chem, Int. Ed 2016, 55, 13090–13094.CrossRefGoogle Scholar
  4. [4]
    Li, Q. Nanoscience with Liquid Crystals: From Self-Organized Nanostructures to Applications; Springer: Switzerland, 2014.CrossRefGoogle Scholar
  5. [5]
    Wang, L.; Li. Q. Photochromism into nanosystems: Towards lighting up the future nanoworld. Chem. Soc. Rev. 2018, 47, 1044–1097.CrossRefGoogle Scholar
  6. [6]
    Chung, Y. F.; Chen, M. Z.; Yang, S. H.; Jeng, S. C. Tunable surface wettability of ZnO nanoparticle arrays for controlling the alignment of liquid crystals. ACS Appl. Mater. Interfaces 2015, 7, 9619–9624.CrossRefGoogle Scholar
  7. [7]
    Zhao, D. Y.; Zhou, W.; Cui, X. P.; Tian, Y.; Guo, L.; Yang, H. Alignment of liquid crystals doped with nickel nanoparticles containing different morphologies. Adv. Mater. 2011, 23, 5779–5784.CrossRefGoogle Scholar
  8. [8]
    Liu, H. S.; Jeng, S. C. Liquid crystal alignment by polyhedral oligomeric silsesquioxane (POSS)-polyimide nanocomposites. Opt. Mater. 2013, 35, 1418–1421.CrossRefGoogle Scholar
  9. [9]
    Ahmad, F.; Jamil, M.; Lee, J. W.; Jeon, Y. J. Magnetically driven vertical alignment of liquid crystals by ferromagnetic particles. Liquid Cryst. 2015, 42, 233–239.CrossRefGoogle Scholar
  10. [10]
    Prasad, S. K.; Kumar, M. V.; Yelamaggad, C. V. Dual frequency conductivity switching in a carbon nanotube/liquid crystal composite. Carbon 2013, 59, 512–517.CrossRefGoogle Scholar
  11. [11]
    Lee, W.-K.; Choi, Y. S.; Kang, Y.-G.; Sung, J.; Seo, D. S.; Park, C. Super-fast switching of twisted nematic liquid crystals on 2D single wall carbon nanotube networks. Adv. Funct. Mater. 2011, 21, 3843–3850.CrossRefGoogle Scholar
  12. [12]
    Garcia-Garcia, A.; Vergaz, R.; Algorri, J. F.; Quintana, X.; Oton, J. M. Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes. Beilstein J. Nanotechnol. 2015, 6, 396–403.CrossRefGoogle Scholar
  13. [13]
    Zhang, Y.; Liu, Q. K.; Mundoor, H.; Yuan, Y.; Smalyukh, I. I. Metal nanoparticle dispersion, alignment, and assembly in nematic liquid crystals for applications in switchable plasmonic color filters and E-polarizers. ACS Nano 2015, 9, 3097–3108.CrossRefGoogle Scholar
  14. [14]
    Marino, L.; Marino, S.; Wang, D.; Bruno, E.; Scaramuzza, N. Nonvolatile memory effects in an orthoconic smectic liquid crystal mixture doped with polymer-capped gold nanoparticles. Soft Matter 2014, 10, 3842–3849.CrossRefGoogle Scholar
  15. [15]
    Nishida, N.; Shiraishi, Y.; Kobayashi, S.; Toshima, N. Fabrication of liquid crystal sol containing capped Ag-Pd bimetallic nanoparticles and their electro-optic properties. J. Phys. Chem. C 2008, 112, 20284–20290.CrossRefGoogle Scholar
  16. [16]
    Chandran, A.; Prakash, J.; Naik, K. K.; Srivastava, A. K.; Dabrowski, R.; Czerwinski, M.; Biradar, A. M. Preparation and characterization of MgO nanoparticles/ferroelectric liquid crystal composites for faster display devices with improved contrast. J. Mater. Chem. C 2014, 2, 1844–1853.CrossRefGoogle Scholar
  17. [17]
    Goel, P.; Arora, M.; Biradar, A. M. Electro-optic switching in iron oxide nanoparticle embedded paramagnetic chiral liquid crystal via magneto-electric coupling. J. Appl. Phys. 2014, 115, 124905.CrossRefGoogle Scholar
  18. [18]
    Branch, J.; Thompson, R.; Taylor, J. W.; Salamanca-Riba, L.; Martínez-Miranda, L. J. ZnO nanorod-smectic liquid crystal composites: Role of ZnO particle size, shape, and concentration on liquid crystal order and current-voltage properties. J. Appl. Phys. 2014, 115, 164313.CrossRefGoogle Scholar
  19. [19]
    Darla, M. R.; Hegde, S.; Varghese, S. Effect of BaTiO3 nanoparticle on electro-optical properties of polymer dispersed liquid crystal displays. J. Crystalliz. Process Technol. 2014, 4, 60–63.CrossRefGoogle Scholar
  20. [20]
    Shukla, R. K.; Liebig, C. M.; Evans, D. R.; Haase, W. Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RSCAdv. 2014, 4, 18529–18536.Google Scholar
  21. [21]
    Kaczmarek, M.; Buchnev, O.; Nandhakumar, I. Ferroelectric nanoparticles in low refractive index liquid crystals for strong electro-optic response. Appl. Phys. Lett. 2008, 92, 103307.CrossRefGoogle Scholar
  22. [22]
    Kurochkin, O.; Buchnev, O.; Iljin, A.; Park, S. K.; Kwon, S. B.; Grabar, O.; Reznikov, Y. A colloid of ferroelectric nanoparticles in a cholesteric liquid crystal. J. Opt. A: Pure Appl. Opt. 2009, 11, 024003.CrossRefGoogle Scholar
  23. [23]
    Lee, W.-K.; Hwang, S. J.; Cho, M.-J.; Park, H.-G.; Han, J.-W.; Song, S.; Jang, J. H.; Seo, D.-S. CIS-ZnS quantum dots for self-aligned liquid crystal molecules with superior electro-optic properties. Nanoscale 2013, 5, 193–199.CrossRefGoogle Scholar
  24. [24]
    Cho, M.-J.; Park, H.-G.; Jeong, H.-C.; Lee, J.-W.; Jung, Y. H.; Kim, D.-H.; Kim, J.-H.; Lee, J.-W.; Seo, D.-S. Superior fast switching of liquid crystal devices using graphene quantum dots. LiquidCryst. 2014, 41, 761–767.Google Scholar
  25. [25]
    Liu, F.; Wang, J. J.; Ge, Z. H.; Li, K. X.; Ding, H. J.; Zhang, B. P.; Wang, D.; Yang, H. Electro-responsive 1-D nanomaterial driven broad-band reflection in chiral nematic liquid crystals. J. Mater. Chem. C 2013, 1, 216–219.CrossRefGoogle Scholar
  26. [26]
    Wang, L.; He, W. L.; Xiao, X.; Wang, M,; Yang, P. Y.; Zhou, Z. J.; Yang, H.; Yu, H. F.; Lu, Y. F. Low voltage and hysteresis-free blue phase liquid crystal dispersed by ferroelectric nanoparticles. J. Mater Chem. 2012, 22, 19629–19633.CrossRefGoogle Scholar
  27. [27]
    Zhang, X. W.; Luo, D.; Li, Y.; Zhao, M.; Han, B.; Zhao, M. T.; Dai, H. T. PbS nanoparticles stabilised blue phase liquid crystals. Liquid Cryst. 2015, 42, 1257–1261.CrossRefGoogle Scholar
  28. [28]
    Shang, Y.; Guo, L. Facet-controlled synthetic strategy of Cu2O-based crystals for catalysis and sensing. Adv. Sci. 2015, 2, 1500140.CrossRefGoogle Scholar
  29. [29]
    Shang, Y.; Zhang, D. F.; Guo, L. CuCl-intermediated construction of short-range-ordered Cu2O mesoporous spheres with excellent adsorption performance. J. Mater. Chem. 2012, 22, 856–861.CrossRefGoogle Scholar
  30. [30]
    Rao, H. H.; Fu, H.; Jiang, Y. Y.; Zhao, Y. F. Easy copper-catalyzed synthesis of primary aromatic amines by couplings aromatic boronic acids with aqueous ammonia at room temperature. Angew. Chem., Int. Ed. 2009, 48, 1114–1116.CrossRefGoogle Scholar
  31. [31]
    You, T. T.; Jiang, L.; Yin, P. G.; Shang, Y.; Zhang, D. F.; Guo, L.; Yang, S, H. Direct observation of p,p’-dimercaptoazobenzene produced from p-aminothiophenol and p-nitrothiophenol on Cu2O nanoparticles by surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 2014, 45, 7–14.CrossRefGoogle Scholar
  32. [32]
    Jiang, L.; You, T. T.; Yin, P. G.; Shang, Y.; Zhang, D. F.; Guo, L.; Yang, S. H. Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: Charge-transfer and electromagnetic enhancement. Nanoscale 2013, 5, 2784–2789.CrossRefGoogle Scholar
  33. [33]
    Hung, L. I.; Tsung, C. K.; Huang, W. Y.; Yang, P. D. Room-temperature formation of hollow Cu2O nanoparticles. Adv. Mater. 2010, 22, 1910–1914.CrossRefGoogle Scholar
  34. [34]
    Zhang, D. F.; Zhang, H.; Guo, L. Zheng, K.; Han, X. D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem. 2009, 19, 5220–5225.CrossRefGoogle Scholar
  35. [35]
    Zheng, Z. G.; Li, Y. N.; Bisoyi, H. K.; Wang, L.; Bunning, T. J.; Li, Q. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 2016, 531, 352–357.CrossRefGoogle Scholar
  36. [36]
    Fan, J.; L, Y. N.; Bisoyi, H. K.; Zola, R. S.; Yang, D. K.; Bunning, T. J.; Weitz, D. A.; Li, Q. Light-directing omnidirectional circularly polarized reflection from liquid-crystal droplets. Angew. Chem., Int. Ed. 2015, 127, 2188–2192.CrossRefGoogle Scholar
  37. [37]
    Wang, L.; Dong, H.; Li, Y. N.; Xue, C. M.; Sun, L. D.; Yan, C. H.; Li, Q. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J. Am. Chem. Soc. 2014, 136, 4480–4483.CrossRefGoogle Scholar
  38. [38]
    Wang, H. H.; Wang, L.; Xie, H.; Li, C. Y.; Guo, S. M.; Wang, M.; Zou, C.; Yang, D. K.; Yang, H. Electrically controllable microstructures and dynamic light scattering properties of liquid crystals with negative dielectric anisotropy. RSC Adv. 2015, 5, 33489–33495.CrossRefGoogle Scholar
  39. [39]
    Fu, D. W.; Li, J. T.; Wei, J.; Guo, J. B. Effects of terminal chain length in hydrogen-bonded chiral switches on phototunable behavior of chiral nematic liquid crystals: Helicity inversion and phase transition. Soft Matter, 2015, 11, 3034–3045.CrossRefGoogle Scholar
  40. [40]
    Jin, O. Y.; Fu, D. W.; Ge, Y. X.; Wei, J.; Guo, J. B. Hydrogen-bonded chiral molecular switches: Photo-and thermally-reversible switchable full range color in the self-organized helical superstructure. New J. Chem. 2015, 39, 254–261.CrossRefGoogle Scholar
  41. [41]
    Wang, L.; Dong, H.; Li, Y. N.; Liu, R.; Wang, Y. F.; Bisoyi, H. K.; Sun, L.D.; Yan, C. H.; Li, Q. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv. Mater. 2015, 27, 2065–2069.CrossRefGoogle Scholar
  42. [42]
    Wang, L.; Bisoyi, H. K.; Zheng, Z. G.; Gutierrez-Cuevas, K. G.; Singh, G.; Kumar, S.; Bunning, T. J.; Li. Q. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene. Mater. Today 2017, 20, 230–237.CrossRefGoogle Scholar
  43. [43]
    Li, Q.; Li, Y. N.; Ma, J.; Yang, D. K.; White, T. J.; Bunning, T. J. Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure. Adv. Mater. 2011, 23, 5069–5073.CrossRefGoogle Scholar
  44. [44]
    Coles, H.; Morris, S. Liquid-crystal lasers. Nat. Photonics 2010, 4, 676–685.CrossRefGoogle Scholar
  45. [45]
    Mulder, D. J.; Schenning, A. P. H. J.; Bastiaansen, C. W. M. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors. J. Mater. Chem. C 2014, 2, 6695–6705.CrossRefGoogle Scholar
  46. [46]
    Liang, X. D.; Gao, L.; Yang, S. W.; Sun, J. Facile synthesis and shape evolution of single-crystal cuprous oxide. Adv. Mater. 2009, 21, 2068–2071.CrossRefGoogle Scholar
  47. [47]
    Engstrom, D.; Trivedi, R. P.; Persson, M.; Goksor, M.; Bertness K. A.; Smalyukh. I. I. Three-dimensional imaging of liquid crystal structures and defects by means of holographic manipulation of colloidal nanowires with faceted sidewalls. Soft Matter 2011, 7, 6304–6312.CrossRefGoogle Scholar
  48. [48]
    Yang, D. K.; Huang, X. Y.; Zhu, Y. M. Bistable cholesteric reflective displays: Materials and drive schemes. Ann. Rev. Mater. Sci. 1997, 27, 117–146.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical EngineeringBeihang UniversityBeijingChina
  2. 2.Key Laboratory of Micro-Nano Measurement-Manipulation and Physics, Ministry of Education, School of Physics and Nuclear Energy EngineeringBeihang UniversityBeijingChina

Personalised recommendations