Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells
- 71 Downloads
Abstract
Two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN) can be used as robust and flexible encapsulation overlayers, which effectively protect metal cores but allow reactions to occur between inner cores and outer shells. Here, we demonstrate this concept by showing that Pt@h-BN core–shell nanocatalysts present enhanced performances in H2/O2 fuel cells. Electrochemical (EC) tests combined with operando EC-Raman characterizations were performed to monitor the reaction process and its intermediates, which confirm that Pt-catalyzed electrocatalytic processes happen under few-layer h-BN covers. The confinement effect of the h-BN shells prevents Pt nanoparticles from aggregating and helps to alleviate the CO poisoning problem. Accordingly, embedding nanocatalysts within ultrathin 2D material shells can be regarded as an effective route to design high-performance electrocatalysts.
Keywords
electrocatalysis two-dimensional materials core–shell confinement catalysis operando RamanPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Nos. 21688102, 91545204, 21522508, and 21621063), Ministry of Science and Technology of China (Nos. 2016YFA0200200 and 2017YFB0602205), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200), DICP DMTO201502, and DICP&QIBEBT UN201707.
Supplementary material
References
- [1]Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Roman-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.CrossRefGoogle Scholar
- [2]Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.CrossRefGoogle Scholar
- [3]Peng, S.; Lee, Y.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of COoxidation. Nano Res. 2008, 1, 229–234.CrossRefGoogle Scholar
- [4]Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.CrossRefGoogle Scholar
- [5]Li, W.; Ding, W.; Nie, Y.; Qi, X. Q.; Wu, G. P.; Li, L.; Liao, J. H.; Chen, S. G.; Wei, Z. D. Enhancing the stability and activity by anchoring Pt nanoparticles between the layers of etched montmorillonite for oxygen reduction reaction. Sci. Bull. 2016, 61, 1435–1439.CrossRefGoogle Scholar
- [6]Ding, W.; Xia, M. R.; Wei, Z. D.; Chen, S. G.; Hu, J. S.; Wan, L. J.; Qi, X. Q.; Hu, X. H.; Li, L. Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction. Chem. Commun. 2014, 50, 6660–6663.CrossRefGoogle Scholar
- [7]Lu, S. L.; Jin, Y. H.; Gu, H. W.; Zhang, W. Recent development of efficient electrocatalysts derived from porous organic polymers for oxygen reduction reaction. Sci. China Chem. 2017, 60, 999–1006.CrossRefGoogle Scholar
- [8]Zhong, C. J.; Maye, M. M. Core-shell assembled nanoparticles as catalysts. Adv. Mater. 2001, 13, 1507–1511.CrossRefGoogle Scholar
- [9]Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.CrossRefGoogle Scholar
- [10]Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. D. Core-shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816–1824.CrossRefGoogle Scholar
- [11]Wen, Z.; Liu, J.; Li, J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 2008, 20, 743–747.CrossRefGoogle Scholar
- [12]Guo, L.; Jiang, W. J.; Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 2015, 5, 2903–2909.CrossRefGoogle Scholar
- [13]Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.; Kung, H. H.; Stair, P. C. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 2012, 335, 1205–1208.CrossRefGoogle Scholar
- [14]Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
- [15]Kim, H.; Robertson, A. W.; Kim, S. O.; Kim, J. M.; Warner, J. H. Resilient high catalytic performance of platinum nanocatalysts with porous graphene envelope. ACS Nano 2015, 9, 5947–5957.CrossRefGoogle Scholar
- [16]De Rogatis, L.; Cargnello, M.; Gombac, V.; Lorenzut, B.; Montini, T.; Fornasiero, P. Embedded phases: A way to active and stable catalysts. ChemSusChem 2010, 3, 24–42.CrossRefGoogle Scholar
- [17]Lang, H. G.; Maldonado, S.; Stevenson, K. J.; Chandler, B. D. Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc. 2004, 126, 12949–12956.CrossRefGoogle Scholar
- [18]Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
- [19]An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.CrossRefGoogle Scholar
- [20]Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.CrossRefGoogle Scholar
- [21]Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
- [22]Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837–3848.CrossRefGoogle Scholar
- [23]Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.CrossRefGoogle Scholar
- [24]Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616–3623.CrossRefGoogle Scholar
- [25]Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023–17028.CrossRefGoogle Scholar
- [26]Zhou, Y. N.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z. N.; Kaxiras, E.; Zhang, Z. Y. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett. 2016, 16, 6058–6063.CrossRefGoogle Scholar
- [27]Li, W.; Ding, W.; Wu, G. P.; Liao, J. H.; Yao, N.; Qi, X. Q.; Li, L.; Chen, S. G.; Wei, Z. D. Cobalt modified twodimensional polypyrrole synthesized in a flat nanoreactor for the catalysis of oxygen reduction. Chem. Eng. Sci. 2015, 135, 45–51.CrossRefGoogle Scholar
- [28]Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Spaceconfinement- induced synthesis of pyridinic- and pyrrolicnitrogen- doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.CrossRefGoogle Scholar
- [29]Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved COoxidation reaction confined in Pt@h-BN core-shell nanoreactors. Nano Res. 2017, 10, 1403–1412.CrossRefGoogle Scholar
- [30]Gao, L. J.; Fu, Q.; Wei, M. M.; Zhu, Y. F.; Liu, Q.; Crumlin, E.; Liu, Z.; Bao, X. H. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells. ACS Catal. 2016, 6, 6814–6822.CrossRefGoogle Scholar
- [31]Hansen, T. W.; Wagner, J. B.; Hansen, P. L.; Dahl, S.; Topsøe, H.; Jacobsen, C. J. H. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 2001, 294, 1508–1510.CrossRefGoogle Scholar
- [32]Shrestha, R. P.; Diyabalanage, H. V. K.; Semelsberger, T. A.; Ott, K. C.; Burrell, A. K. Catalytic dehydrogenation of ammonia borane in non-aqueous medium. Int. J. Hydrogen Energ. 2009, 34, 2616–2621.CrossRefGoogle Scholar
- [33]Smythe, N. C.; Gordon, J. C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. Eur. J. Inorg. Chem. 2010, 2010, 509–521.CrossRefGoogle Scholar
- [34]Kim, G.; Jang, A. R.; Jeong, H. Y.; Lee, Z.; Kang, D. J.; Shin, H. S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839.CrossRefGoogle Scholar
- [35]Ren, N.; Yang, Y. H.; Shen, J.; Zhang, Y. H.; Xu, H. L.; Gao, Z.; Tang, Y. Novel, efficient hollow zeolitically microcapsulized noble metal catalysts. J. Catal. 2007, 251, 182–188.CrossRefGoogle Scholar
- [36]Limat, M.; Fóti, G.; Hugentobler, M.; Stephan, R.; Harbich, W. Electrochemically stable gold nanoclusters in hopg nanopits. Catal. Today 2009, 146, 378–385.CrossRefGoogle Scholar
- [37]Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 2015, 162, F1144–F1158.Google Scholar
- [38]Kocha, S. S.; Shinozaki, K.; Zack, J. W.; Myers, D. J.; Kariuki, N. N.; Nowicki, T.; Stamenkovic, V.; Kang, Y. J.; Li, D. G.; Papageorgopoulos, D. Best practices and testing protocols for benchmarking orr activities of fuel cell electrocatalysts using rotating disk electrode. Electrocatalysis 2017, 8, 366–374.CrossRefGoogle Scholar
- [39]Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930–5934.CrossRefGoogle Scholar
- [40]Jeanmaire, D. L.; Van Duyne, R. P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interf. Electrochem. 1977, 84, 1–20.CrossRefGoogle Scholar
- [41]Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.CrossRefGoogle Scholar
- [42]Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.CrossRefGoogle Scholar
- [43]Li, C. Y.; Dong, J. C.; Jin, X.; Chen, S.; Panneerselvam, R.; Rudnev, A. V.; Yang, Z. L.; Li, J. F.; Wandlowski, T.; Tian, Z. Q. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticleenhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7648–7651.CrossRefGoogle Scholar
- [44]Tanaka, H.; Sugawara, S.; Shinohara, K.; Ueno, T.; Suzuki, S.; Hoshi, N.; Nakamura, M. Infrared reflection absorption spectroscopy of OHadsorption on the low index planes of Pt. Electrocatalysis 2015, 6, 295–299.CrossRefGoogle Scholar
- [45]Itoh, T.; Maeda, T.; Kasuya, A. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. Faraday Discuss. 2006, 132, 95–109.CrossRefGoogle Scholar
- [46]Kim, J. W.; Gewirth, A. A. Mechanism of oxygen electroreduction on gold surfaces in basic media. J. Phys. Chem. B 2006, 110, 2565–2571.CrossRefGoogle Scholar
- [47]Li, X.; Gewirth, A. A. Oxygen electroreduction through a superoxide intermediate on bi-modified Au surfaces. J. Am. Chem. Soc. 2005, 127, 5252–5260.CrossRefGoogle Scholar
- [48]Keith, J. A.; Jerkiewicz, G.; Jacob, T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem 2010, 11, 2779–2794.CrossRefGoogle Scholar
- [49]Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
- [50]Mertens, S. F. L.; Hemmi, A.; Muff, S.; Gröning, O.; De Feyter, S.; Osterwalder, J.; Greber, T. Switching stiction and adhesion of a liquid on a solid. Nature 2016, 534, 676–679.CrossRefGoogle Scholar
- [51]Fu, Y. C.; Rudnev, A. V.; Wiberg, G. K. H.; Arenz, M. Single graphene layer on Pt(111) creates confined electrochemical environment via selective ion transport. Angew. Chem., Int. Ed. 2017, 56, 12883–12887.CrossRefGoogle Scholar
- [52]Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.CrossRefGoogle Scholar
- [53]Wang, Q. M.; Chen, S. G.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W. et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale kirkendall effect. Adv. Mater. 2016, 28, 10673–10678.CrossRefGoogle Scholar
- [54]Cheng, N. C.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R. Y.; Ye, S. Y.; Knights, S.; Sun, X. L. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 2015, 27, 277–281.CrossRefGoogle Scholar