Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells

  • Mengmeng Sun
  • Jinchao Dong
  • Yang Lv
  • Siqin Zhao
  • Caixia Meng
  • Yujiang Song
  • Guoxiong Wang
  • Jianfeng Li
  • Qiang Fu
  • Zhongqun Tian
  • Xinhe Bao
Research Article
  • 71 Downloads

Abstract

Two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN) can be used as robust and flexible encapsulation overlayers, which effectively protect metal cores but allow reactions to occur between inner cores and outer shells. Here, we demonstrate this concept by showing that Pt@h-BN core–shell nanocatalysts present enhanced performances in H2/O2 fuel cells. Electrochemical (EC) tests combined with operando EC-Raman characterizations were performed to monitor the reaction process and its intermediates, which confirm that Pt-catalyzed electrocatalytic processes happen under few-layer h-BN covers. The confinement effect of the h-BN shells prevents Pt nanoparticles from aggregating and helps to alleviate the CO poisoning problem. Accordingly, embedding nanocatalysts within ultrathin 2D material shells can be regarded as an effective route to design high-performance electrocatalysts.

Keywords

electrocatalysis two-dimensional materials core–shell confinement catalysis operando Raman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21688102, 91545204, 21522508, and 21621063), Ministry of Science and Technology of China (Nos. 2016YFA0200200 and 2017YFB0602205), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020200), DICP DMTO201502, and DICP&QIBEBT UN201707.

Supplementary material

12274_2018_2029_MOESM1_ESM.pdf (2.3 mb)
Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells

References

  1. [1]
    Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Roman-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.CrossRefGoogle Scholar
  2. [2]
    Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.CrossRefGoogle Scholar
  3. [3]
    Peng, S.; Lee, Y.; Wang, C.; Yin, H. F.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of COoxidation. Nano Res. 2008, 1, 229–234.CrossRefGoogle Scholar
  4. [4]
    Fu, Q.; Yang, F.; Bao, X. H. Interface-confined oxide nanostructures for catalytic oxidation reactions. Acc. Chem. Res. 2013, 46, 1692–1701.CrossRefGoogle Scholar
  5. [5]
    Li, W.; Ding, W.; Nie, Y.; Qi, X. Q.; Wu, G. P.; Li, L.; Liao, J. H.; Chen, S. G.; Wei, Z. D. Enhancing the stability and activity by anchoring Pt nanoparticles between the layers of etched montmorillonite for oxygen reduction reaction. Sci. Bull. 2016, 61, 1435–1439.CrossRefGoogle Scholar
  6. [6]
    Ding, W.; Xia, M. R.; Wei, Z. D.; Chen, S. G.; Hu, J. S.; Wan, L. J.; Qi, X. Q.; Hu, X. H.; Li, L. Enhanced stability and activity with Pd-O junction formation and electronic structure modification of palladium nanoparticles supported on exfoliated montmorillonite for the oxygen reduction reaction. Chem. Commun. 2014, 50, 6660–6663.CrossRefGoogle Scholar
  7. [7]
    Lu, S. L.; Jin, Y. H.; Gu, H. W.; Zhang, W. Recent development of efficient electrocatalysts derived from porous organic polymers for oxygen reduction reaction. Sci. China Chem. 2017, 60, 999–1006.CrossRefGoogle Scholar
  8. [8]
    Zhong, C. J.; Maye, M. M. Core-shell assembled nanoparticles as catalysts. Adv. Mater. 2001, 13, 1507–1511.CrossRefGoogle Scholar
  9. [9]
    Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.CrossRefGoogle Scholar
  10. [10]
    Zhang, Q.; Lee, I.; Joo, J. B.; Zaera, F.; Yin, Y. D. Core-shell nanostructured catalysts. Acc. Chem. Res. 2013, 46, 1816–1824.CrossRefGoogle Scholar
  11. [11]
    Wen, Z.; Liu, J.; Li, J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 2008, 20, 743–747.CrossRefGoogle Scholar
  12. [12]
    Guo, L.; Jiang, W. J.; Zhang, Y.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction. ACS Catal. 2015, 5, 2903–2909.CrossRefGoogle Scholar
  13. [13]
    Lu, J. L.; Fu, B. S.; Kung, M. C.; Xiao, G. M.; Elam, J. W.; Kung, H. H.; Stair, P. C. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 2012, 335, 1205–1208.CrossRefGoogle Scholar
  14. [14]
    Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.CrossRefGoogle Scholar
  15. [15]
    Kim, H.; Robertson, A. W.; Kim, S. O.; Kim, J. M.; Warner, J. H. Resilient high catalytic performance of platinum nanocatalysts with porous graphene envelope. ACS Nano 2015, 9, 5947–5957.CrossRefGoogle Scholar
  16. [16]
    De Rogatis, L.; Cargnello, M.; Gombac, V.; Lorenzut, B.; Montini, T.; Fornasiero, P. Embedded phases: A way to active and stable catalysts. ChemSusChem 2010, 3, 24–42.CrossRefGoogle Scholar
  17. [17]
    Lang, H. G.; Maldonado, S.; Stevenson, K. J.; Chandler, B. D. Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. J. Am. Chem. Soc. 2004, 126, 12949–12956.CrossRefGoogle Scholar
  18. [18]
    Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shapecontrolled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2009, 48, 60–103.CrossRefGoogle Scholar
  19. [19]
    An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.CrossRefGoogle Scholar
  20. [20]
    Deng, D. H.; Novoselov, K. S.; Fu, Q.; Zheng, N. F.; Tian, Z. Q.; Bao, X. H. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.CrossRefGoogle Scholar
  21. [21]
    Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.CrossRefGoogle Scholar
  22. [22]
    Zhou, J. W.; Qin, J.; Zhang, X.; Shi, C. S.; Liu, E. Z.; Li, J. J.; Zhao, N. Q.; He, C. N. 2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode. ACS Nano 2015, 9, 3837–3848.CrossRefGoogle Scholar
  23. [23]
    Fu, Q.; Bao, X. H. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 2017, 46, 1842–1874.CrossRefGoogle Scholar
  24. [24]
    Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616–3623.CrossRefGoogle Scholar
  25. [25]
    Yao, Y. X.; Fu, Q.; Zhang, Y. Y.; Weng, X. F.; Li, H.; Chen, M. S.; Jin, L.; Dong, A. Y.; Mu, R. T.; Jiang, P. et al. Graphene cover-promoted metal-catalyzed reactions. Proc. Natl. Acad. Sci. USA 2014, 111, 17023–17028.CrossRefGoogle Scholar
  26. [26]
    Zhou, Y. N.; Chen, W.; Cui, P.; Zeng, J.; Lin, Z. N.; Kaxiras, E.; Zhang, Z. Y. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett. 2016, 16, 6058–6063.CrossRefGoogle Scholar
  27. [27]
    Li, W.; Ding, W.; Wu, G. P.; Liao, J. H.; Yao, N.; Qi, X. Q.; Li, L.; Chen, S. G.; Wei, Z. D. Cobalt modified twodimensional polypyrrole synthesized in a flat nanoreactor for the catalysis of oxygen reduction. Chem. Eng. Sci. 2015, 135, 45–51.CrossRefGoogle Scholar
  28. [28]
    Ding, W.; Wei, Z. D.; Chen, S. G.; Qi, X. Q.; Yang, T.; Hu, J. S.; Wang, D.; Wan, L. J.; Alvi, S. F.; Li, L. Spaceconfinement- induced synthesis of pyridinic- and pyrrolicnitrogen- doped graphene for the catalysis of oxygen reduction. Angew. Chem., Int. Ed. 2013, 52, 11755–11759.CrossRefGoogle Scholar
  29. [29]
    Sun, M. M.; Fu, Q.; Gao, L. J.; Zheng, Y. P.; Li, Y. Y.; Chen, M. S.; Bao, X. H. Catalysis under shell: Improved COoxidation reaction confined in Pt@h-BN core-shell nanoreactors. Nano Res. 2017, 10, 1403–1412.CrossRefGoogle Scholar
  30. [30]
    Gao, L. J.; Fu, Q.; Wei, M. M.; Zhu, Y. F.; Liu, Q.; Crumlin, E.; Liu, Z.; Bao, X. H. Enhanced nickel-catalyzed methanation confined under hexagonal boron nitride shells. ACS Catal. 2016, 6, 6814–6822.CrossRefGoogle Scholar
  31. [31]
    Hansen, T. W.; Wagner, J. B.; Hansen, P. L.; Dahl, S.; Topsøe, H.; Jacobsen, C. J. H. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 2001, 294, 1508–1510.CrossRefGoogle Scholar
  32. [32]
    Shrestha, R. P.; Diyabalanage, H. V. K.; Semelsberger, T. A.; Ott, K. C.; Burrell, A. K. Catalytic dehydrogenation of ammonia borane in non-aqueous medium. Int. J. Hydrogen Energ. 2009, 34, 2616–2621.CrossRefGoogle Scholar
  33. [33]
    Smythe, N. C.; Gordon, J. C. Ammonia borane as a hydrogen carrier: Dehydrogenation and regeneration. Eur. J. Inorg. Chem. 2010, 2010, 509–521.CrossRefGoogle Scholar
  34. [34]
    Kim, G.; Jang, A. R.; Jeong, H. Y.; Lee, Z.; Kang, D. J.; Shin, H. S. Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839.CrossRefGoogle Scholar
  35. [35]
    Ren, N.; Yang, Y. H.; Shen, J.; Zhang, Y. H.; Xu, H. L.; Gao, Z.; Tang, Y. Novel, efficient hollow zeolitically microcapsulized noble metal catalysts. J. Catal. 2007, 251, 182–188.CrossRefGoogle Scholar
  36. [36]
    Limat, M.; Fóti, G.; Hugentobler, M.; Stephan, R.; Harbich, W. Electrochemically stable gold nanoclusters in hopg nanopits. Catal. Today 2009, 146, 378–385.CrossRefGoogle Scholar
  37. [37]
    Shinozaki, K.; Zack, J. W.; Richards, R. M.; Pivovar, B. S.; Kocha, S. S. Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique I. Impact of impurities, measurement protocols and applied corrections. J. Electrochem. Soc. 2015, 162, F1144–F1158.Google Scholar
  38. [38]
    Kocha, S. S.; Shinozaki, K.; Zack, J. W.; Myers, D. J.; Kariuki, N. N.; Nowicki, T.; Stamenkovic, V.; Kang, Y. J.; Li, D. G.; Papageorgopoulos, D. Best practices and testing protocols for benchmarking orr activities of fuel cell electrocatalysts using rotating disk electrode. Electrocatalysis 2017, 8, 366–374.CrossRefGoogle Scholar
  39. [39]
    Li, H. B.; Xiao, J. P.; Fu, Q.; Bao, X. H. Confined catalysis under two-dimensional materials. Proc. Natl. Acad. Sci. USA 2017, 114, 5930–5934.CrossRefGoogle Scholar
  40. [40]
    Jeanmaire, D. L.; Van Duyne, R. P. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interf. Electrochem. 1977, 84, 1–20.CrossRefGoogle Scholar
  41. [41]
    Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166.CrossRefGoogle Scholar
  42. [42]
    Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.CrossRefGoogle Scholar
  43. [43]
    Li, C. Y.; Dong, J. C.; Jin, X.; Chen, S.; Panneerselvam, R.; Rudnev, A. V.; Yang, Z. L.; Li, J. F.; Wandlowski, T.; Tian, Z. Q. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticleenhanced Raman spectroscopy. J. Am. Chem. Soc. 2015, 137, 7648–7651.CrossRefGoogle Scholar
  44. [44]
    Tanaka, H.; Sugawara, S.; Shinohara, K.; Ueno, T.; Suzuki, S.; Hoshi, N.; Nakamura, M. Infrared reflection absorption spectroscopy of OHadsorption on the low index planes of Pt. Electrocatalysis 2015, 6, 295–299.CrossRefGoogle Scholar
  45. [45]
    Itoh, T.; Maeda, T.; Kasuya, A. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. Faraday Discuss. 2006, 132, 95–109.CrossRefGoogle Scholar
  46. [46]
    Kim, J. W.; Gewirth, A. A. Mechanism of oxygen electroreduction on gold surfaces in basic media. J. Phys. Chem. B 2006, 110, 2565–2571.CrossRefGoogle Scholar
  47. [47]
    Li, X.; Gewirth, A. A. Oxygen electroreduction through a superoxide intermediate on bi-modified Au surfaces. J. Am. Chem. Soc. 2005, 127, 5252–5260.CrossRefGoogle Scholar
  48. [48]
    Keith, J. A.; Jerkiewicz, G.; Jacob, T. Theoretical investigations of the oxygen reduction reaction on Pt(111). ChemPhysChem 2010, 11, 2779–2794.CrossRefGoogle Scholar
  49. [49]
    Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.CrossRefGoogle Scholar
  50. [50]
    Mertens, S. F. L.; Hemmi, A.; Muff, S.; Gröning, O.; De Feyter, S.; Osterwalder, J.; Greber, T. Switching stiction and adhesion of a liquid on a solid. Nature 2016, 534, 676–679.CrossRefGoogle Scholar
  51. [51]
    Fu, Y. C.; Rudnev, A. V.; Wiberg, G. K. H.; Arenz, M. Single graphene layer on Pt(111) creates confined electrochemical environment via selective ion transport. Angew. Chem., Int. Ed. 2017, 56, 12883–12887.CrossRefGoogle Scholar
  52. [52]
    Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L. P.; Zhang, Z. Y.; Fu, Q.; Peng, L. M. et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.CrossRefGoogle Scholar
  53. [53]
    Wang, Q. M.; Chen, S. G.; Shi, F.; Chen, K.; Nie, Y.; Wang, Y.; Wu, R.; Li, J.; Zhang, Y.; Ding, W. et al. Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale kirkendall effect. Adv. Mater. 2016, 28, 10673–10678.CrossRefGoogle Scholar
  54. [54]
    Cheng, N. C.; Banis, M. N.; Liu, J.; Riese, A.; Li, X.; Li, R. Y.; Ye, S. Y.; Knights, S.; Sun, X. L. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 2015, 27, 277–281.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Mengmeng Sun
    • 1
    • 2
  • Jinchao Dong
    • 3
  • Yang Lv
    • 4
  • Siqin Zhao
    • 1
    • 2
  • Caixia Meng
    • 1
    • 2
  • Yujiang Song
    • 4
  • Guoxiong Wang
    • 1
  • Jianfeng Li
    • 3
  • Qiang Fu
    • 1
  • Zhongqun Tian
    • 3
  • Xinhe Bao
    • 1
  1. 1.State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  4. 4.State Key Laboratory of Fine Chemicals, School of Chemical EngineeringDalian University of TechnologyDalianChina

Personalised recommendations