Nano Research

, Volume 11, Issue 6, pp 3480–3489 | Cite as

Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries

  • Meng Wang
  • Qinghua Liang
  • Junwei Han
  • Ying TaoEmail author
  • Donghai Liu
  • Chen Zhang
  • Wei Lv
  • Quan-Hong YangEmail author
Research Article


The practical application of lithium-sulfur batteries with a high energy density has been plagued by the poor cycling stability of the sulfur cathode, which is a result of the insulating nature of sulfur and the dissolution of polysulfides. Much work has been done to construct nanostructured or doped carbon as a porous or polar host for promising sulfur cathodes, although restricting the polysulfide shuttle effect by improving the redox reaction kinetics is more attractive. Herein, we present a well-designed strategy by introducing graphitic carbon nitride (g-C3N4) into a three-dimensional hierarchical porous graphene assembly to achieve a synergistic combination of confinement and catalyzation of polysulfides. The porous g-C3N4 nanosheets in situ formed inside the graphene network afford a highly accessible surface to catalyze the transformation of polysulfides, and the hierarchical porous graphene-assembled carbon can function as a conductive network and provide appropriate space for g-C3N4 catalysis in the sulfur cathode. Thus, this hybrid can effectively improve sulfur utilization and block the dissolution of polysulfides, achieving excellent cycling performance for sulfur cathodes in lithium-sulfur batteries.


lithium-sulfur batteries lithium polysulfide graphitic carbon nitride (g-C3N4graphene catalytic conversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program of China (No. 2014CB932400). Q.-H. Y. is grateful for the support of the National Natural Science Foundation of China (No. 51525204) and Y. T. acknowledges support from the National Natural Science Foundation of China (No. 51702229).

Supplementary material

12274_2018_2023_MOESM1_ESM.pdf (2.2 mb)
Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries


  1. [1]
    Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.CrossRefGoogle Scholar
  2. [2]
    Choi, J. W.; Aurbach, D. Promise and reality of postlithium-ion batteries with high energy densities. Nat. Rev. Mater. 2016, 1, 16013.CrossRefGoogle Scholar
  3. [3]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  4. [4]
    Tan, G. Q.; Xu, R.; Xing, Z. Y.; Yuan, Y. F.; Lu, J.; Wen, J. G.; Liu, C.; Ma, L.; Zhan, C.; Liu, Q. et al. Burning lithium in CS2 for high-performing compact Li2S-graphene nanocapsules for Li-S batteries. Nat. Energy 2017, 2, 17090.CrossRefGoogle Scholar
  5. [5]
    Peng, H. J.; Huang, J. Q.; Liu, X. Y.; Cheng, X. B.; Xu, W. T.; Zhao, C. Z.; Wei, F.; Zhang, Q. Healing high-loading sulfur electrodes with unprecedented long cycling life: Spatial heterogeneity control. J. Am. Chem. Soc. 2017, 139, 8458–8466.CrossRefGoogle Scholar
  6. [6]
    Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.CrossRefGoogle Scholar
  7. [7]
    Li, G.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithiumsulfur batteries. Nat. Commun. 2016, 7, 10601.CrossRefGoogle Scholar
  8. [8]
    Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.CrossRefGoogle Scholar
  9. [9]
    Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.CrossRefGoogle Scholar
  10. [10]
    Tang, C.; Li, B. Q.; Zhang, Q.; Zhu, L.; Wang, H. F.; Shi, J. L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.CrossRefGoogle Scholar
  11. [11]
    Jia, X. L.; Zhang, C.; Liu, J. J.; Lv, W.; Wang, D. W.; Tao, Y.; Li, Z. J.; Zheng, X. Y.; Yu, J. S.; Yang, Q. H. Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li-S batteries. Nanoscale 2016, 8, 4447–4451.CrossRefGoogle Scholar
  12. [12]
    Liu, J. H.; Li, W. F.; Duan, L. M.; Li, X.; Ji, L.; Geng, Z. B.; Huang, K. K.; Lu, L. H.; Zhou, L. S.; Liu, Z. R. et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 2015, 15, 5137–5142.CrossRefGoogle Scholar
  13. [13]
    Zhou, G. M.; Paek, E.; Hwang, G. S.; Manthiram, A. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat. Commun. 2015, 6, 7760.CrossRefGoogle Scholar
  14. [14]
    Hou, T. Z.; Chen, X.; Peng, H. J.; Huang, J. Q.; Li, B. Q.; Zhang, Q.; Li, B. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries. Small 2016, 12, 3283–3291.CrossRefGoogle Scholar
  15. [15]
    Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.CrossRefGoogle Scholar
  16. [16]
    Liu, D. H.; Zhang, C.; Zhou, G. M.; Lv, W.; Ling, G. W.; Zhi, L. J.; Yang, Q.-H. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect. Adv. Sci. 2018, 5, 1700270.CrossRefGoogle Scholar
  17. [17]
    Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/ graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.CrossRefGoogle Scholar
  18. [18]
    Zhou, T. H.; Zhao, Y.; Zhou, G. M.; Lv, W.; Sun, P. J.; Kang, F. Y.; Li, B. H.; Yang, Q. H. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement. Nano Energy 2017, 39, 291–296.CrossRefGoogle Scholar
  19. [19]
    Zheng, C.; Niu, S. Z.; Lv, W.; Zhou, G. M.; Li, J.; Fan, S. X.; Deng, Y. Q.; Pan, Z. Z.; Li, B. H.; Kang, F. Y. et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 2017, 33, 306–312.CrossRefGoogle Scholar
  20. [20]
    Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusionconversion of polysulfides towards ultralong life lithiumsulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.CrossRefGoogle Scholar
  21. [21]
    Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.CrossRefGoogle Scholar
  22. [22]
    Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.CrossRefGoogle Scholar
  23. [23]
    Cao, S. W.; Low, J. X.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.CrossRefGoogle Scholar
  24. [24]
    Liang, Q. H.; Li, Z.; Yu, X. L.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Macroscopic 3D porous graphitic carbon nitride monolith for enhanced photocatalytic hydrogen evolution. Adv. Mater. 2015, 27, 4634–4639.CrossRefGoogle Scholar
  25. [25]
    Liang, J.; Yin, L. C.; Tang, X. N.; Yang, H. C.; Yan, W. S.; Song, L.; Cheng, H. M.; Li, F. Kinetically enhanced electrochemical redox of polysulfides on polymeric carbon nitrides for improved lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 25193–25201.CrossRefGoogle Scholar
  26. [26]
    Liao, K. M.; Mao, P.; Li, N.; Han, M.; Yi, J.; He, P.; Sun, Y.; Zhou, H. S. Stabilization of polysulfides via lithium bonds for Li-S batteries. J. Mater. Chem. A 2016, 4, 5406–5409.CrossRefGoogle Scholar
  27. [27]
    Fan, C. Y.; Yuan, H. Y.; Li, H. H.; Wang, H. F.; Li, W. L.; Sun, H. Z.; Wu, X. L.; Zhang, J. P. The effective design of a polysulfide-trapped separator at the molecular level for high energy density Li-S batteries. ACS Appl. Mater. Interfaces 2016, 8, 16108–16115.CrossRefGoogle Scholar
  28. [28]
    Yu, H. J.; Shang, L.; Bian, T.; Shi, R.; Waterhouse, G. I. N.; Zhao, Y. F.; Zhou, C.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Nitrogen-doped porous carbon nanosheets templated from g-C3N4 as metal-free electrocatalysts for efficient oxygen reduction reaction. Adv. Mater. 2016, 28, 5080–5086.CrossRefGoogle Scholar
  29. [29]
    Pang, Q.; Nazar, L. F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 2016, 10, 4111–4118.CrossRefGoogle Scholar
  30. [30]
    Liang, Q. H.; Li, Z.; Bai, Y.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Reduced-sized monolayer carbon nitride nanosheets for highly improved photoresponse for cell imaging and photocatalysis. Sci. China Mater. 2017, 60, 109–118.CrossRefGoogle Scholar
  31. [31]
    Li, Z. J.; Wu, S. D.; Lv, W.; Shao, J. J.; Kang, F. Y.; Yang, Q. H. Graphene emerges as a versatile template for materials preparation. Small 2016, 12, 2674–2688.CrossRefGoogle Scholar
  32. [32]
    Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  33. [33]
    Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.CrossRefGoogle Scholar
  34. [34]
    Tao, Y.; Xie, X. Y.; Lv, W.; Tang, D. M.; Kong, D. B.; Huang, Z. H.; Nishihara, H.; Ishii, T.; Li, B. H.; Golberg, D. et al. Towards ultrahigh volumetric capacitance: Graphene derived highly dense but porous carbons for supercapacitors. Sci. Rep. 2013, 3, 2975.CrossRefGoogle Scholar
  35. [35]
    Liang, Q. H.; Li, Z.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H. Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production. Adv. Funct. Mater. 2015, 25, 6885–6892.CrossRefGoogle Scholar
  36. [36]
    Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Du, A. J.; Jaroniec, M.; Qiao, S. Z. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 2014, 5, 3783.CrossRefGoogle Scholar
  37. [37]
    Han, Q.; Wang, B.; Gao, J.; Cheng, Z. H.; Zhao, Y.; Zhang, Z. P.; Qu, L. T. Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 2016, 10, 2745–2751.CrossRefGoogle Scholar
  38. [38]
    Ma, T. Y.; Dai, S.; Mietek, J.; Qiao, S. Z. Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 7281–7285.CrossRefGoogle Scholar
  39. [39]
    Chen, K.; Chai, Z. G.; Li, C.; Shi, L. R.; Liu, M. X.; Xie, Q.; Zhang, Y. F.; Xu, D. S.; Manivannan, A.; Liu, Z. F. Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 composite for hydrocarbon oxidation. ACS Nano 2016, 10, 3665–3673.CrossRefGoogle Scholar
  40. [40]
    Han, Q.; Cheng, Z. H.; Gao, J.; Zhao, Y.; Zhang, Z. P.; Dai, L. M.; Qu, L. T. Mesh-on-mesh graphitic-C3N4@graphene for highly efficient hydrogen evolution. Adv. Funct. Mater. 2017, 27, 1606352.CrossRefGoogle Scholar
  41. [41]
    Liu, Q.; Zhang, J. Y. Graphene supported Co-g-C3N4 as a novel metal-macrocyclic electrocatalyst for the oxygen reduction reaction in fuel cells. Langmuir 2013, 29, 3821–3828.CrossRefGoogle Scholar
  42. [42]
    Hou, Y.; Wen, Z. H.; Cui, S. M.; Feng, X. L.; Chen, J. H. Strongly coupled ternary hybrid aerogels of N-deficient porous graphitic-C3N4 nanosheets/N-doped graphene/NiFe-layered double hydroxide for solar-driven photoelectrochemical water oxidation. Nano Lett. 2016, 16, 2268–2277.CrossRefGoogle Scholar
  43. [43]
    Hou, T. Z.; Xu, W. T.; Chen, X.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Lithium bond chemistry in lithium-sulfur batteries. Angew. Chem., Int. Ed. 2017, 56, 8178–8182.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Meng Wang
    • 1
  • Qinghua Liang
    • 2
  • Junwei Han
    • 1
  • Ying Tao
    • 1
    Email author
  • Donghai Liu
    • 1
  • Chen Zhang
    • 3
  • Wei Lv
    • 2
  • Quan-Hong Yang
    • 1
    Email author
  1. 1.Nanoyang Group, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Tianjin UniversityTianjinChina
  2. 2.Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  3. 3.School of Marine Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations