Self-powered versatile shoes based on hybrid nanogenerators

  • 334 Accesses

  • 8 Citations


A triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) were hybridized to harvest the human mechanical energy. By an effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator with a radius of 2 cm and height of 1.2 cm could charge a 1,000 μF capacitor to 5.09 V after 100 cycles of vibration. This mini-sized hybrid nanogenerator could then be embedded in shoes to serve as an energy cell. Typical outdoor applications—including driving with a Global Positioning System (GPS) device, charging a Li-ion battery and a cell phone—were successfully demonstrated, suggesting its potential application in smart wearable electronics and future suits of soldiers.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. [1]

    Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.

  2. [2]

    Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.

  3. [3]

    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K. V.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.

  4. [4]

    Cima, M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014, 32, 642–643.

  5. [5]

    Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv. 2016, 2, e1601473.

  6. [6]

    Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.

  7. [7]

    Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.

  8. [8]

    Jing, Q. S.; Xie, Y. N.; Zhu, G.; Han, R. P. S.; Wang, Z. L. Self-powered thin-film motion vector sensor. Nat. Commun. 2015, 6, 8031.

  9. [9]

    Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

  10. [10]

    Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

  11. [11]

    Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

  12. [12]

    Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.

  13. [13]

    Wu, Y. C.; Zhong, X. D.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014, 7, 1631–1639.

  14. [14]

    Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

  15. [15]

    Yang, Y.; Loomis, J.; Ghasemi, H.; Lee, S. W.; Wang, Y. J.; Cui, Y.; Chen, G. Membrane-free battery for harvesting low-grade thermal energy. Nano Lett. 2014, 14, 6578–6583.

  16. [16]

    Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.

  17. [17]

    Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272–276.

  18. [18]

    Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.; Wang, Z. L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203.

  19. [19]

    Zhang, H. L.; Xie, Y. H.; Li, X. M.; Huang, Z. L.; Zhang, S. J.; Su, Y. J.; Wu, B.; He, L.; Yang, W. Q.; Lin, Y. Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy 2016, 101, 202–210.

  20. [20]

    Quan, T.; Wang, X.; Wang, Z. L.; Yang, Y. Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 2015, 9, 12301–12310.

  21. [21]

    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.

  22. [22]

    Wang, X.; Yang, Y. Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy 2017, 32, 36–41.

  23. [23]

    Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating- disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.

  24. [24]

    Zhong, X. D.; Yang, Y.; Wang, X.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 2015, 13, 771–780.

  25. [25]

    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

  26. [26]

    Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.

  27. [27]

    Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

  28. [28]

    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

  29. [29]

    Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.

  30. [30]

    Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.

  31. [31]

    Liu, L.; Tang, W.; Wang, Z. L. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology 2017, 28, 035405.

  32. [32]

    Li, H. Y.; Su, L.; Kuang, S. Y.; Pan, C. F.; Zhu, G.; Wang, Z. L. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 2015, 25, 5691–5697.

  33. [33]

    Jie, Y.; Wang, N.; Cao, X.; Xu, Y.; Li, T.; Zhang, X. J.; Wang, Z. L. Self-powered triboelectric nanosensor with poly (tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 2015, 9, 8376–8383.

Download references


L. L., W. T., and C. R. D. contributed equally to this work. The authors acknowledge the support from the National Key R & D Project from Ministry of Science and Technology (No. 2016YFA0202704), National Natural Science Foundation of China (Nos. 51432005, 5151101243, and 51561145021), Beijing Municipal Science & Technology Commission (No. Y3993113DF), the “Thousands Talents” program for pioneer researcher, and their innovation team in China.

Author information

Correspondence to Zhong Lin Wang.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Tang, W., Deng, C. et al. Self-powered versatile shoes based on hybrid nanogenerators. Nano Res. 11, 3972–3978 (2018) doi:10.1007/s12274-018-1978-z

Download citation


  • triboelectric nanogenerators
  • electromagnetic generators
  • hybrid nanogenerators