Single-step flash-heat synthesis of red phosphorus/graphene flame-retardant composite as flexible anodes for sodium-ion batteries

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • 325 Accesses

  • 3 Citations


Red phosphorus (RP) has attracted considerable attention as the anode for high-performance Na-ion batteries, owing to its low cost and high theoretical specific capacity of ∼ 2,600 mAh/g. In this study, a facile single-step flash-heat treatment was developed to achieve the reduction of graphene oxide (GO) and the simultaneous deposition of RP onto the reduced graphene oxide (rGO) sheets. The resulting RP/rGO composite was shown to be a promising candidate for overcoming the issues associated with the poor electronic conductivity and large volume variation of RP during cycling. The RP/rGO flexible film anode delivered an average capacity of 1,625 mAh/g during 200 cycles at a charge/discharge current density of 1 A/g. Average charge capacities of 1,786, 1,597, 1,324, and 679 mAh/g at 1, 2, 4, and 6 A/g current densities were obtained in the rate capability tests. Moreover, owing to the RP component, the RP/rGO film presented superior flame retardancy compared to an rGO film. This work thus introduces a highly accessible synthesis method to prepare flexible and safe RP anodes with superior electrochemical performance toward Na-ion storage.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA


  1. [1]

    Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

  2. [2]

    Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.

  3. [3]

    Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.

  4. [4]

    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew. Chem., Int. Ed. 2015, 54, 3431–3448.

  5. [5]

    Liu, Y. H.; Fang, X.; Ge, M. Y.; Rong, J. P.; Shen, C. F.; Zhang, A. Y.; Enaya, H. A.; Zhou, C. W. SnO2 coated carbon cloth with surface modification as Na-ion battery anode. Nano Energy 2015, 16, 399–407.

  6. [6]

    Liu, Y. H.; Fang, X.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Enaya, H. A.; Zhou, C. W. Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: The capacity decay mechanism and Al2O3 surface modification. Nano Energy 2016, 27, 27–34.

  7. [7]

    Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

  8. [8]

    Peng, Q.; Hu, K. M.; Sa, B. S.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136–3150.

  9. [9]

    Xu, G. L.; Chen, Z. H.; Zhong, G. M.; Liu, Y. Z.; Yang, Y.; Ma, T. Y.; Ren, Y.; Zhou, X. B.; Wu, X. H.; Zhang, X. Y. et al. Nanostructured black phosphorus/ketjenblackmultiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett. 2016, 16, 3955–3965.

  10. [10]

    Chen, L.; Zhou, G. M.; Liu, Z. B.; Ma, X. M.; Chen, J.; Zhang, Z. Y.; Ma, X. L.; Li, F.; Cheng, H. M.; Ren, W. C. Scalable clean exfoliation of high-quality few-layer black phosphorus for a flexible lithium ion battery. Adv. Mater. 2016, 28, 510–517.

  11. [11]

    Levchik, S. V.; Weil, E. D. A review of recent progress in phosphorus-based flame retardants. J. Fire Sci. 2006, 24, 345–364.

  12. [12]

    Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.

  13. [13]

    Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

  14. [14]

    Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem. 2013, 125, 4731–4734.

  15. [15]

    Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.

  16. [16]

    Zhang, C.; Wang, X.; Liang, Q. F.; Liu, X. Z.; Weng, Q. H.; Liu, J. W.; Yang, Y. J.; Dai, Z. H.; Ding, K. J.; Bando, Y. et al. Amorphous phosphorus/nitrogen-doped graphene paper for ultrastable sodium-ion batteries. Nano Lett. 2016, 16, 2054–2060.

  17. [17]

    Liu, Y. H.; Zhang, A. Y.; Shen, C. F.; Liu, Q. Z.; Cao, X.; Ma, Y. Q.; Chen, L.; Lau, C.; Chen, T. C.; Wei, F. W. et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano 2017, 11, 5530–5537.

  18. [18]

    Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

  19. [19]

    Li, W. H.; Hu, S. H.; Luo, X. Y.; Li, Z. L.; Sun, X. Z.; Li, M. S.; Liu, F. F.; Yu, Y. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 2017, 29, 1605820.

  20. [20]

    Chen, Y. N.; Egan, G. C.; Wan, J. Y.; Zhu, S. Z.; Jacob, R. J.; Zhou, W. B.; Dai, J. Q.; Wang, Y. B.; Danner, V. A.; Yao, Y. G. et al. Ultra-fast self-assembly and stabilization of reactive nanoparticles in reduced graphene oxide films. Nat. Commun. 2016, 7, 12332.

  21. [21]

    Yao, Y. G.; Chen, F. J.; Nie, A. M.; Lacey, S. D.; Jacob, R. J.; Xu, S. M.; Huang, Z. N.; Fu, K.; Dai, J. Q.; Salamanca-Riba, L. et al. In situ high temperature synthesis of single-component metallic nanoparticles. ACS Cent. Sci. 2017, 3, 294–301.

  22. [22]

    Dave, K.; Park, K. H.; Dhayal, M. Two-step process for programmable removal of oxygen functionalities of graphene oxide: Functional, structural and electrical characteristics. RSC Adv. 2015, 5, 95657–95665.

  23. [23]

    Penmatsa, V.; Kim, T.; Beidaghi, M.; Kawarada, H.; Gu, L.; Wang, Z. F.; Wang, C. L. Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. Nanoscale 2012, 4, 3673–3678.

  24. [24]

    Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240.

  25. [25]

    Sun, J.; Zheng, G. Y.; Lee, H.-W.; Liu, N.; Wang, H. T.; Yao, H. B.; Yang, W. S.; Cui, Y. Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. Nano Lett. 2014, 14, 4573–4580.

  26. [26]

    Forney, M. W.; Ganter, M. J.; Staub, J. W.; Ridgley, R. D.; Landi, B. J. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 2013, 13, 4158–4163.

  27. [27]

    Zhao, J.; Lu, Z. D.; Wang, H. T.; Liu, W.; Lee, H. W.; Yan, K.; Zhou, D.; Lin, D. C.; Liu, N.; Cui, Y. Artificial solid electrolyte interphase-protected LixSi nanoparticles: An efficient and stable prelithiation reagent for lithium-ion batteries. J. Am. Chem. Soc. 2015, 137, 8372–8375.

  28. [28]

    Yang, Y. J.; Tang, D.-M.; Zhang, C.; Zhang, Y. H.; Liang, Q. F.; Chen, S. M.; Weng, Q. H.; Zhou, M.; Xue, Y. M.; Liu, J. W. et al. “Protrusions” or “holes” in graphene: Which is the better choice for sodium ion storage? Energy Environ. Sci. 2017, 10, 979–986.

  29. [29]

    Ma, G. Y.; Xiang, Z. H.; Huang, K. S.; Ju, Z. C.; Zhuang, Q. C.; Cui, Y. H. Graphene-based phosphorus-doped carbon as anode material for high-performance sodium-ion batteries. Part. Part. Syst. Charact. 2017, 34, 1600315.

  30. [30]

    Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.

  31. [31]

    Zong, L. Q.; Zhu, B.; Lu, Z. D.; Tan, Y. L.; Jin, Y.; Liu, N.; Hu, Y.; Gu, S.; Zhu, J.; Cui, Y. Nanopurification of silicon from 84% to 99.999% purity with a simple and scalable process. Proc. Natl. Acad. Sci. USA 2015, 112, 13473–13477.

  32. [32]

    Zhu, B.; Jin, Y.; Tan, Y. L.; Zong, L. Q.; Hu, Y.; Chen, L.; Chen, Y. B.; Zhang, Q.; Zhu, J. Scalable production of Si nanoparticles directly from low grade sources for lithiumion battery anode. Nano Lett. 2015, 15, 5750–5754.

  33. [33]

    Luo, W.; Wang, Y. X.; Wang, L. J.; Jiang, W.; Chou, S.-L.; Dou, S. X.; Liu, H. K.; Yang, J. P. Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano 2016, 10, 10524–10532.

  34. [34]

    Balakrishnan, P. G.; Ramesh, R.; Kumar, T. P. Safety mechanisms in lithium-ion batteries. J. Power Sources 2006, 155, 401–414.

  35. [35]

    Janek, J.; Zeier, W. G. A solid future for battery development. Nat. Energy 2016, 1, 16141.

  36. [36]

    Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

  37. [37]

    Zhang, S. S. A review on electrolyte additives for lithium-ion batteries. J. Power Sources 2006, 162, 1379–1394.

  38. [38]

    Nakagawa, H.; Fujino, Y.; Kozono, S.; Katayama, Y.; Nukuda, T.; Sakaebe, H.; Matsumoto, H.; Tatsumi, K. Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. J. Power Sources 2007, 174, 1021–1026.

  39. [39]

    Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes. J. Electrochem. Soc. 2002, 149, A622–A626.

  40. [40]

    Hyung, Y. E.; Vissers, D. R.; Amine, K. Flame-retardant additives for lithium-ion batteries. J. Power Sources 2003, 119–121, 383–387.

  41. [41]

    Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H. Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes. J. Power Sources 2007, 173, 562–564.

  42. [42]

    Shim, E. G.; Nam, T. H.; Kim, J. G.; Kim, H. S.; Moon, S. I. Diphenyloctyl phosphate as a flame-retardant additive in electrolyte for Li-ion batteries. J. Power Sources 2008, 175, 533–539.

  43. [43]

    Zhu, X. M.; Jiang, X. Y.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Bis(2,2,2-trifluoroethyl) ethylphosphonate as novel high-efficient flame retardant additive for safer lithium-ion battery. Electrochim. Acta 2015, 165, 67–71.

  44. [44]

    Liu, K.; Liu, W.; Qiu, Y. C.; Kong, B.; Sun, Y. M.; Chen, Z.; Zhuo, D.; Lin, D. C.; Cui, Y. Electrospun core–shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 2017, 3, e1601978.

  45. [45]

    Kim, J. H.; Kim, J. H.; Kim, J. M.; Lee, Y. G.; Lee, S. Y. Superlattice crystals-mimic, flexible/functional ceramic membranes: Beyond polymeric battery separators. Adv. Energy Mater. 2015, 5, 1500954.

  46. [46]

    Kang, S. M.; Ryou, M. H.; Choi, J. W.; Lee, H. Mussel-and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater. 2012, 24, 3481–3485.

  47. [47]

    Van der Veen, I.; de Boer, J. Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012, 88, 1119–1153.

  48. [48]

    Green, J. A review of phosphorus-containing flame retardants. J. Fire Flammabl. 1992, 10, 470–487.

Download references


We would like to acknowledge the collaboration of this research with King Abdul-Aziz City for Science and Technology (KACST) via The Center of Excellence for Nanotechnologies (CEGN). A portion of the images and data used in this article were acquired at The Center for Electron Microscopy and Microanalysis, University of Southern California.

Author information

Correspondence to Chongwu Zhou.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, A., Shen, C. et al. Single-step flash-heat synthesis of red phosphorus/graphene flame-retardant composite as flexible anodes for sodium-ion batteries. Nano Res. 11, 3780–3790 (2018).

Download citation


  • sodium-ion batteries
  • red phosphorus
  • facile synthesis
  • flexible
  • flame-retardant
  • reduced graphene oxide