Advertisement

Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy

Abstract

Triboelectric nanogenerators (TENGs) for harvesting rotary mechanical energy are mostly based on in-plane sliding or free-standing mode. However, the relative displacement between two contacting triboelectric layers causes abrasion, which lowers the output power and reduces service life. Therefore, it is important to develop a method to minimize abrasion when harvesting rotary mechanical energy. Here, we report a scale-like structured TENG (SL-TENG), in which two triboelectric layers work under a contact-separation mode to avoid in-plane relative sliding in order to minimize abrasion. As a result, the SL-TENG exhibits outstanding robustness. For example, the output voltage of the SL-TENG does not exhibit any measurable decay although this output has been continuously generated through more than a million cycles. Moreover, at a very low rotation rate of 120 rpm, the SL-TENG can generate a maximum short-circuit current of 78 μA, delivering an instantaneous power density of 2.54 W/m2 to an external load. In relation to this, a Li-ion battery was charged using the SL-TENG. After a 30-min charging time, the battery achieved a discharge capacity of 0.1 mAh. Through a power management circuit integrated into the SL-TENG, a continuous direct current (DC) of 5 V is outputted, providing sufficient DC power for driving a radio-frequency wireless sensor and other conventional electronics.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. [1]

    Wang, Z. L.Catch wave power in floating nets. Nature 2017, 542, 159–160.

  2. [2]

    Herbert, G. M. J.; Iniyan, S.; Sreevalsan, E.; Rajapandian, S. A review of wind energy technologies. Renewable Sustainable Energy Rev. 2007, 11, 1117–1145.

  3. [3]

    Ackermann, T.; Söder, L. Wind energy technology and current status: A review. Renewable Sustainable Energy Rev. 2000, 4, 315–374.

  4. [4]

    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.

  5. [5]

    Chen, J.; Yang, J.; Li, Z. L.; Fan, X.; Zi, Y. L.; Jing, Q. S.; Guo, H. Y.; Wen, Z.; Pradel, K. C.; Niu, S. M. et al. Networks of triboelectric nanogenerators for harvesting water wave energy: A potential approach toward blue energy. ACS Nano 2015, 9, 3324–3331.

  6. [6]

    Bae, J.; Lee, J.; Kim, S.; Ha, J.; Lee, B.-S.; Park, Y.; Choong, C.; Kim, J.-B.; Wang, Z. L.; Kim, H.-Y. et al. Flutter-driven triboelectrification for harvesting wind energy. Nat. Commun. 2014, 5, 4929.

  7. [7]

    Zi, Y. L.; Guo, H. Y.; Wen, Z.; Yeh, M.-H.; Hu, C. G.; Wang, Z. L. Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator. ACS Nano 2016, 10, 4797–4805.

  8. [8]

    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

  9. [9]

    Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Bai, P.; Pan, C. F.; Yang, Y.; Zhou, Y. S.; Wang, Z. L. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 2013, 13, 847–853.

  10. [10]

    Zhang, X.-S.; Han, M.-D.; Wang, R.-X.; Zhu, F.-Y.; Li, Z.-H.; Wang, W.; Zhang, H.-X. Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 2013, 13, 1168–1172.

  11. [11]

    Bai, P.; Zhu, G.; Lin, Z.-H.; Jing, Q. S.; Chen, J.; Zhang, G.; Ma, J. S.; Wang, Z. L. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 2013, 7, 3713–3719.

  12. [12]

    Chen, J.; Zhu, G.; Yang, W. Q.; Jing, Q. S.; Bai, P.; Yang, Y.; Hou, T.-C.; Wang, Z. L. Harmonic-resonator-based triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor. Adv. Mater. 2013, 25, 6094–6099.

  13. [13]

    Ahmed, A.; Hassan, I.; Ibn-Mohammed, T.; Mostafa, H.; Reaney, I. M.; Koh, L. S. C.; Zu, J.; Wang, Z. L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 2017, 10, 653–671.

  14. [14]

    Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

  15. [15]

    Luo, J. J.; Tang, W.; Fan, F. R.; Liu, C. F.; Pang, Y. K.; Cao, G. Z.; Wang, Z. L. Transparent and flexible self-charging power film and its application in a sliding unlock system in touchpad technology. ACS Nano 2016, 10, 8078–8086.

  16. [16]

    Jing, Q. S.; Xie, Y. N.; Zhu, G.; Han, R. P. S.; Wang, Z. L. Self-powered thin-film motion vector sensor. Nat. Commun. 2015, 6, 8031.

  17. [17]

    Wang, Z. L. Self-powered nanosensors and nanosystems. Adv. Mater. 2012, 24, 280–285.

  18. [18]

    Yang, Y.; Zhang, H. L.; Chen, J.; Jing, Q. S.; Zhou, Y. S.; Wen, X. N.; Wang, Z. L. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 2013, 7, 7342–7351.

  19. [19]

    Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.

  20. [20]

    Chen, S. W.; Wang, N.; Ma, L.; Li, T.; Willander, M.; Jie, Y.; Cao, X.; Wang, Z. L. Triboelectric nanogenerator for sustainable wastewater treatment via a self-powered electrochemical process. Adv. Energy Mater. 2016, 6, 1501778.

  21. [21]

    Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272–276.

  22. [22]

    Li, A. Y.; Zi, Y. L.; Guo, H. Y.; Wang, Z. L.; Fernandez, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481–487.

  23. [23]

    Chen, S. W.; Gao, C. Z.; Tang, W.; Zhu, H. R.; Han, Y.; Jiang, Q. W.; Li, T.; Cao, X.; Wang, Z. L. Self-powered cleaning of air pollution by wind driven triboelectric nanogenerator. Nano Energy 2015, 14, 217–225.

  24. [24]

    Zhu, G.; Pan, C. F.; Guo, W. X.; Chen, C.-Y.; Zhou, Y. S.; Yu, R. M.; Wang, Z. L. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett. 2012, 12, 4960–4965.

  25. [25]

    Niu, S. M.; Wang, X. F.; Yi, F.; Zhou, Y. S.; Wang, Z. L. A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics. Nat. Commun. 2015, 6, 8975.

  26. [26]

    Chun, J.; Ye, B. U.; Lee, J. W.; Choi, D.; Kang, C.-Y.; Kim, S.-W.; Wang, Z. L.; Baik, J. M. Boosted output performance of triboelectric nanogenerator via electric double layer effect. Nat. Commun. 2016, 7, 12985.

  27. [27]

    Wang, S. H.; Lin, L.; Wang, Z. L. Nanoscale triboelectriceffect- enabled energy conversion for sustainably powering portable electronics. Nano Lett. 2012, 12, 6339–6346.

  28. [28]

    Chen, J.; Zhu, G.; Yang, J.; Jing, Q. S.; Bai, P.; Yang, W. Q.; Qi, X. W.; Su, Y. J.; Wang, Z. L. Personalized keystroke dynamics for self-powered human-machine interfacing. ACS Nano 2015, 9, 105–116.

  29. [29]

    Wen, Z.; Chen, J.; Yeh, M.-H.; Guo, H. Y.; Li, Z. L.; Fan, X.; Zhang, T. J.; Zhu, L. P.; Wang, Z. L. Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer. Nano Energy 2015, 16, 38–46.

  30. [30]

    Pu, X.; Liu, M. M.; Li, L. X.; Zhang, C.; Pang, Y. K.; Jiang, C. Y.; Shao, L. H.; Hu, W. G.; Wang, Z. L. Efficient charging of Li-ion batteries with pulsed output current of triboelectric nanogenerators. Adv. Sci. 2016, 3, 1500255.

  31. [31]

    Zhu, G.; Chen, J.; Zhang, T. J.; Jing, Q. S.; Wang, Z. L. Radial-arrayed rotary electrification for high performance triboelectric generator. Nat. Commun. 2014, 5, 3426.

  32. [32]

    Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z.-H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.

  33. [33]

    Zhang, C.; Tang, W.; Pang, Y.; Han, C. B.; Wang, Z. L. Active micro-actuators for optical modulation based on a planar sliding triboelectric nanogenerator. Adv. Mater. 2015, 27, 719–726.

  34. [34]

    Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y. S.; Jing, Q. S.; Pan, C. F.; Wang, Z. L. Linear-grating triboelectric generator based on sliding electrification. Nano Lett. 2013, 13, 2282–2289.

  35. [35]

    Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.

  36. [36]

    Chen, J.; Yang, J.; Guo, H. Y.; Li, Z. L.; Zheng, L.; Su, Y. J.; Wen, Z.; Fan, X.; Wang, Z. L. Automatic mode transition enabled robust triboelectric nanogenerators. ACS Nano 2015, 9, 12334–12343.

  37. [37]

    Fang, H.; Wu, W. Z.; Song, J. H.; Wang, Z. L. Controlled growth of aligned polymer nanowires. J. Phys. Chem. C 2009, 113, 16571–16574.

  38. [38]

    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Liu, C.; Zhou, Y. S.; Wang, Z. L. Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: Methodology and theoretical understanding. Adv. Mater. 2014, 26, 6720–6728.

  39. [39]

    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

  40. [40]

    Zi, Y. L.; Wang, J.; Wang, S. H.; Li, S. M.; Wen, Z.; Guo, H. Y.; Wang, Z. L. Effective energy storage from a triboelectric nanogenerator. Nat. Commun. 2016, 7, 10987.

Download references

Acknowledgements

We wish to thank Tao Zhou and Jinxi Zhang for stimulating discussions, and Hongtao Yuan, Jianqiang Fu and Chaoying Zhang for assistance on characterization measurements. This work is supported by the National Key R&D Project from the Minister of Science and Technology, China (Nos. 2016YFA0202702, 2016YFA0202703, and 2016YFA0202704) and the National Natural Science Foundation of China (Nos. 21703010, 21274006 and 51503005), the Programs for Beijing Science and Technology Leading Talent (No. Z16111000490000).

Author information

Correspondence to Congju Li.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, X., Li, N., Liu, Y. et al. Ultra-robust triboelectric nanogenerator for harvesting rotary mechanical energy. Nano Res. 11, 2862–2871 (2018) doi:10.1007/s12274-017-1916-5

Download citation

Keywords

  • nanogenerator
  • ultra-robust
  • energy harvesting
  • rotary motions
  • scale-like structure