Advertisement

Nano Research

, Volume 11, Issue 6, pp 3116–3121 | Cite as

Observation of unconventional anomalous Hall effect in epitaxial CrTe thin films

  • Dapeng Zhao
  • Liguo Zhang
  • Iftikhar Ahmed Malik
  • Menghan Liao
  • Wenqiang Cui
  • Xinqiang Cai
  • Cheng Zheng
  • Luxin Li
  • Xiaopeng Hu
  • Ding Zhang
  • Jinxing Zhang
  • Xi Chen
  • Wanjun Jiang
  • Qikun Xue
Research Article
  • 324 Downloads

Abstract

We have studied the magnetic and electrical transport properties of epitaxial NiAs-type CrTe thin films grown on SrTiO3(111) substrates. Unlike rectangle hysteresis loops obtained from magnetic measurements, we have identified intriguing extra bump/dip features from anomalous Hall experiments on the films with thicknesses less than 12 nm. This observed Hall anomaly is phenomenologically consistent with the occurrence of a topological Hall effect(THE) in chiral magnets with a skyrmion phase. Furthermore, the THE contribution can be tuned by the film thickness, showing the key contribution of asymmetric interfaces in stabilizing Néel-type skyrmions. Our work demonstrates that a CrTe thin film on SrTiO3(111) substrates is a good material candidate for studying real-space topological transport.

Keywords

topological Hall effect CrTe films skyrmion phase molecular beam epitaxy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Work performed at Tsinghua was supported by the National Natural Science Foundation of China (Nos. 51561145005 and 11427903), National Key R&D Program of China (Nos. 2017YFA0206200 and 2016YFA0302300), the 1000-Youth talent program of China, the State Key Laboratory of Low-Dimensional Quantum Physics, and the Beijing Advanced Innovation Center for Future Chip (ICFC).

References

  1. [1]
    Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911.CrossRefGoogle Scholar
  2. [2]
    Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 2006, 442, 797–801.CrossRefGoogle Scholar
  3. [3]
    Mühlbauer, S.; Binz, B.; Jonietz, F.; Pfleiderer, C.; Rosch, A.; Neubauer, A.; Georgii, R.; Böni, P. Skyrmion lattice in a chiral magnet. Science 2009, 323, 915–919.CrossRefGoogle Scholar
  4. [4]
    Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156.CrossRefGoogle Scholar
  5. [5]
    Yu, X. Z.; Onose, Y.; Kanazawa, N.; Park, J. H.; Han, J. H.; Matsui, Y.; Nagaosa, N.; Tokura, Y. Real-space observation of a two-dimensional skyrmion crystal. Nature 2010, 465, 901–904.CrossRefGoogle Scholar
  6. [6]
    Heinze, S.; von Bergmann, K.; Menzel, M.; Brede, J.; Kubetzka, A.; Wiesendanger, R.; Bihlmayer, G.; Blügel, S. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions. Nat. Phys. 2011, 7, 713–718.CrossRefGoogle Scholar
  7. [7]
    Yasuda, K.; Wakatsuki, R.; Morimoto, T.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Ezawa, M.; Kawasaki, M.; Nagaosa, N.; Tokura, Y. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 2016, 12, 555–559.CrossRefGoogle Scholar
  8. [8]
    Jiang, W. J.; Chen, G.; Liu, K.; Zang, J. D.; Te Velthuis, S. G. E.; Hoffmann, A. Skyrmions in magnetic multilayers. Phys. Rep. 2017, 704, 1–49.CrossRefGoogle Scholar
  9. [9]
    Dzyaloshinskii, I. A thermodynamic theory of “weak” ferroma-gnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255.CrossRefGoogle Scholar
  10. [10]
    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 1960, 120, 91–98.CrossRefGoogle Scholar
  11. [11]
    Neubauer, A.; Pfleiderer, C.; Binz, B.; Rosch, A.; Ritz, R.; Niklowitz, P. G.; Böni, P. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 2009, 102, 186602.CrossRefGoogle Scholar
  12. [12]
    Lee, M.; Kang, W.; Onose, Y.; Tokura, Y.; Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 2009, 102, 186601.CrossRefGoogle Scholar
  13. [13]
    Li, Y. F.; Kanazawa, N.; Yu, X. Z.; Tsukazaki, A.; Kawasaki, M.; Ichikawa, M.; Jin, X. F.; Kagawa, F.; Tokura, Y. Robust formation of skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. Phys. Rev. Lett. 2013, 110, 117202.CrossRefGoogle Scholar
  14. [14]
    Uchida, M.; Nagaosa, N.; He, J. P.; Kaneko, Y.; Iguchi, S.; Matsui, Y.; Tokura, Y. Topological spin textures in the helimagnet FeGe. Phys. Rev. B 2008, 77, 184402.CrossRefGoogle Scholar
  15. [15]
    Yu, X. Z.; Kanazawa, N.; Onose, Y.; Kimoto, K.; Zhang, W. Z.; Ishiwata, S.; Matsui, Y.; Tokura, Y. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 2011, 10, 106–109.CrossRefGoogle Scholar
  16. [16]
    Dupé, B.; Hoffmann, M.; Paillard, C.; Heinze, S. Tailoring magnetic skyrmions in ultra-thin transition metal films. Nat. Commun. 2014, 5, 4030.CrossRefGoogle Scholar
  17. [17]
    Romming, N.; Hanneken, C.; Menzel, M.; Bickel, J. E.; Wolter, B.; Bergmann, K. V.; Kubetzka, A.; Wiesendanger, R. Writing and deleting single magnetic skyrmions. Science 2013, 341, 636–639.CrossRefGoogle Scholar
  18. [18]
    Matsuno, J.; Ogawa, N.; Yasuda, K.; Kagawa, F.; Koshibae, W.; Nagaosa, N.; Tokura, Y.; Kawasaki, M. Interface-driven topological Hall effect in SrRuO3-SrIrO3 bilayer. Sci. Adv. 2016, 2, e1600304.CrossRefGoogle Scholar
  19. [19]
    Nagaosa, N.; Sinova, J.; Onoda, S.; MacDonald, A. H.; Ong, N. P. Anomalous hall effect. Rev. Mod. Phys. 2010, 82, 1539–1592.CrossRefGoogle Scholar
  20. [20]
    Bogdanov, A. N.; Rößler, U. K. Chiral symmetry breaking in magnetic thin films and multilayers. Phys. Rev. Lett. 2001, 87, 037203.CrossRefGoogle Scholar
  21. [21]
    Bode, M.; Heide, M.; Von Bergmann, K.; Ferriani, P.; Heinze, S.; Bihlmayer, G.; Kubetzka, A.; Pietzsch, O.; Blügel, S.; Wiesendanger, R. Chiral magnetic order at surfaces driven by inversion asymmetry. Nature 2007, 447, 190–193.CrossRefGoogle Scholar
  22. [22]
    Cho, J.; Kim, N. H.; Lee, S.; Kim, J. S.; Lavrijsen, R.; Solignac, A.; Yin, Y. X.; Han, D. S.; Van Hoof, N. J.; Swagten, H. J. et al. Thickness dependence of the interfacial Dzyaloshinskii-Moriya interaction in inversion symmetry broken systems. Nat. Commun. 2015, 6, 7635.CrossRefGoogle Scholar
  23. [23]
    Chen, G.; Ma, T. P.; N’Diaye, A. T.; Kwon, H.; Won, C.; Wu, Y. Z.; Schmid, A. K. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 2013, 4, 2671.CrossRefGoogle Scholar
  24. [24]
    Yu, G. Q.; Upadhyaya, P.; Shao, Q. M.; Wu, H.; Yin, G.; Li, X.; He, C. L.; Jiang, W. J.; Han, X. F.; Amiri, P. K. et al. Room- temperature skyrmion shift device for memory application. Nano Lett. 2017, 17, 261–268.CrossRefGoogle Scholar
  25. [25]
    Dijkstra, J.; Weitering, H. H.; Van Bruggen, C. F.; Haas, C.; De Groot, R. A. Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3). J. Phys.: Condens. Matter 1989, 1, 9141–9161.Google Scholar
  26. [26]
    Shimada, K.; Saitoh, T.; Namatame, H.; Fujimori, A. Photoemission study of itinerant ferromagnet Cr1−δTe. Phys. Rev. B 1996, 53, 7673–7683.CrossRefGoogle Scholar
  27. [27]
    Ohsawa, A.; Yamaguchi, Y.; Kazama, N.; Yamauchi, H.; Watanabe, H. Magnetic anisotropy of Cr1−xTe with x=0.077. J. Phys. Soc. Jpn. 1972, 33, 1303–1307.CrossRefGoogle Scholar
  28. [28]
    Hirone, T.; Chiba, S. On the magnetic anisotropy of single crystal of chromium telluride. J. Phys. Soc. Jpn. 1960, 15, 1991–1994.CrossRefGoogle Scholar
  29. [29]
    Polesya, S.; Mankovsky, S.; Benea, D.; Ebert, H.; Bensch, W. Finite-temperature magnetism of CrTe and CrSe. J. Phys.: Condens. Matter 2010, 22, 156002.Google Scholar
  30. [30]
    Keskin, V.; Aktaş, B.; Schmalhorst, J.; Reiss, G.; Zhang, H.; Weischenberg, J.; Mokrousov, Y. Temperature and Co thickness dependent sign change of the anomalous Hall effect in Co/Pd multilayers: An experimental and theoretical study. Appl. Phys. Lett. 2013, 102, 022416.CrossRefGoogle Scholar
  31. [31]
    Winer, G.; Segal, A.; Karpovski, M.; Shelukhin, V.; Gerber, A. Probing Co/Pd interfacial alloying by the extraordinary Hall effect. J. Appl. Phys. 2015, 118, 173901.CrossRefGoogle Scholar
  32. [32]
    Lee, W. L.; Watauchi, S.; Miller, V. L.; Cava, R. J.; Ong, N. P. Dissipationless anomalous Hall current in the ferromagnetic spinel CuCr2Se4−xBrx. Science 2004, 303, 1647–1649.CrossRefGoogle Scholar
  33. [33]
    Sampaio, J.; Cros, V.; Rohart, S.; Thiaville, A.; Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 2013, 8, 839–844.CrossRefGoogle Scholar
  34. [34]
    Jiang, W. J.; Upadhyaya, P.; Zhang, W.; Yu, G. Q.; Jungfleisch, M. B.; Fradin, F. Y.; Pearson, J. E.; Tserkovnyak, Y.; Wang, K. L.; Heinonen, O. et al. Blowing magnetic skyrmion bubbles. Science 2015, 349, 283–286.CrossRefGoogle Scholar
  35. [35]
    Fert, A.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031.CrossRefGoogle Scholar
  36. [36]
    Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater. 2016, 1, 16044.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Dapeng Zhao
    • 1
  • Liguo Zhang
    • 1
  • Iftikhar Ahmed Malik
    • 2
  • Menghan Liao
    • 1
  • Wenqiang Cui
    • 1
  • Xinqiang Cai
    • 1
  • Cheng Zheng
    • 1
  • Luxin Li
    • 1
  • Xiaopeng Hu
    • 1
  • Ding Zhang
    • 1
    • 3
  • Jinxing Zhang
    • 2
  • Xi Chen
    • 1
    • 3
  • Wanjun Jiang
    • 1
    • 3
  • Qikun Xue
    • 1
    • 3
  1. 1.State Key Laboratory of Low Dimensional Quantum Physics, Department of PhysicsTsinghua UniversityBeijingChina
  2. 2.Department of PhysicsBeijing Normal UniversityBeijingChina
  3. 3.Collaborative Innovation Center of Quantum MatterBeijingChina

Personalised recommendations