Nano Research

, Volume 11, Issue 4, pp 1873–1882 | Cite as

Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind

  • Siwen Cui
  • Youbin Zheng
  • Jun Liang
  • Daoai WangEmail author
Research Article


Polyaniline nanofibers (PANI NFs) are introduced to construct a wind-driven triboelectric nanogenerator (TENG) as a new power source for self-powered cathodic protection. PANI NFs serve as a friction layer to generate charges by harvesting wind energy as well as a conducting layer to transfer charges in TENG. A PANI NFs-based TENG exhibits a high output performance with a maximum output voltage of 375 V, short current circuit of 248 μA, and corresponding power of 14.5 mW under a wind speed of 15 m/s. Additionally, a self-powered anticorrosion system is constructed by using a PANI-based TENG as the power source. The immersion experiment and electrochemical measurements demonstrate that carbon steel coupled with the wind-driven TENG is effectively protected with an evident open circuit potential drop and negative shift in the corrosion potential. The smart self-powered device is promising in terms of applications to protect metals from corrosion by utilizing wind energy in ambient conditions.


polyaniline triboelectric nanogenerator wind-driven self-powered cathodic protection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Thanks for the financial support of the National Natural Science Foundation of China (Nos. 21573259 and 21603242), the outstanding youth fund of Gansu Province (No. 1606RJDA31) and the “Hundred Talents Program” of Chinese Academy of Sciences (D. A. W.).

Supplementary material

12274_2017_1805_MOESM1_ESM.pdf (593 kb)
Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind

Supplementary material, approximately 2.00 MB.

Supplementary material, approximately 3.29 MB.


  1. [1]
    Li, X. G.; Zhang, D. W.; Liu, Z. Y.; Li, Z.; Du, C. W.; Dong, C. F. Materials science: Share corrosion date. Nature 2015, 527, 441–442.CrossRefGoogle Scholar
  2. [2]
    Panossian, Z.; de Almeida, N. L.; de Sousa, R. M. F.; de Souza Pimenta, G.; Marques, L. B. S. Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid: A review. Corros. Sci. 2012, 58, 1–11.CrossRefGoogle Scholar
  3. [3]
    Varela, F.; Tan, M. Y. J.; Forsyth, M. Understanding the effectiveness of cathodic protection under disbonded coatings. Electrochim. Acta 2015, 186, 377–390.CrossRefGoogle Scholar
  4. [4]
    Barbalat, M.; Lanarde, L.; Caron, D.; Meyer, M.; Vittonato, J.; Castillon, F.; Fontaine, S.; Refait, P. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection. Corros. Sci. 2012, 55, 246–253.CrossRefGoogle Scholar
  5. [5]
    DeGiorgi, V. G.; Wimmer, S. A. Geometric details and modeling accuracy requirements for shipboard impressed current cathodic protection system modeling. Eng. Anal. Bound. Elem. 2005, 29, 15–28.CrossRefGoogle Scholar
  6. [6]
    Collazo, A.; Izquierdo, M.; Nóvoa, X. R.; Pérez, C. Surface treatment of carbon steel substrates to prevent cathodic delamination. Electrochim. Acta 2007, 52, 7513–7518.CrossRefGoogle Scholar
  7. [7]
    Szabó, S.; Bakos, I. Impressed current cathodic protection. Corros. Rev. 2006, 24, 39–62.Google Scholar
  8. [8]
    Wang, S. H.; Xie, Y. N.; Niu, S. M.; Lin, L.; Wang, Z. L. Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 2014, 26, 2818–2824.CrossRefGoogle Scholar
  9. [9]
    Zhang, H. L.; Yang, Y.; Su, Y. J.; Chen, J.; Adams, K.; Lee, S.; Hu, C. G.; Wang, Z. L. Triboelectric nanogenerator for harvesting vibration energy in full space and as selfpowered acceleration sensor. Adv. Funct. Mater. 2014, 24, 1401–1407.CrossRefGoogle Scholar
  10. [10]
    Khan, U.; Kim, S. W. Triboelectric nanogenerators for blue energy harvesting. ACS Nano 2016, 10, 6429–6432.CrossRefGoogle Scholar
  11. [11]
    Yang, W. Q.; Chen, J.; Zhu, G.; Yang, J.; Bai, P.; Su, Y. J.; Jing, Q. S.; Cao, X.; Wang, Z. L. Harvesting energy from the natural vibration of human walking. ACS Nano 2013, 7, 11317–11324.CrossRefGoogle Scholar
  12. [12]
    Zhang, L.; Jin, L.; Zhang, B. B.; Deng, W. L.; Pan, H.; Tang, J. F.; Zhu, M. H.; Yang, W. Q. Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy. Nano Energy 2015, 16, 516–523.CrossRefGoogle Scholar
  13. [13]
    Yang, W. Q.; Chen, J.; Jing, Q. S.; Yang, J.; Wen, X. N.; Su, Y. J.; Zhu, G.; Bai, P.; Wang, Z. L. 3D stack integrated triboelectric nanogenerator for harvesting vibration energy. Adv. Funct. Mater. 2014, 24, 4090–4096.CrossRefGoogle Scholar
  14. [14]
    Wang, S. H.; Mu, X. J.; Wang, X.; Gu, A. Y.; Wang, Z. L.; Yang, Y. Elasto-aerodynamics-driven triboelectric nanogenerator for scavenging air-flow energy. ACS Nano 2015, 9, 9554–9563.CrossRefGoogle Scholar
  15. [15]
    Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.CrossRefGoogle Scholar
  16. [16]
    Liu, J. M.; Cui, N. Y.; Gu, L.; Chen, X. B.; Bai, S.; Zheng, Y. B.; Hu, C. X.; Qin, Y. A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment. Nanoscale 2016, 8, 4938–4944.CrossRefGoogle Scholar
  17. [17]
    Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.CrossRefGoogle Scholar
  18. [18]
    Liang, Q. J.; Yan, X. Q.; Liao, X. Q.; Zhang, Y. Integrated multi-unit transparent triboelectric nanogenerator harvesting rain power for driving electronics. Nano Energy 2016, 25, 18–25.CrossRefGoogle Scholar
  19. [19]
    Zhang, L.; Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Tang, J. F.; Zhang, H. T.; Pan, H.; Zhu, M. H.; Yang, W. Q. et al. Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops. Adv. Mater. 2016, 28, 1650–1656.CrossRefGoogle Scholar
  20. [20]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458.CrossRefGoogle Scholar
  21. [21]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  22. [22]
    Fan, F. R.; Tang, W.; Wang, Z. L. Flexible nanogenerators for energy harvesting and self-powered electronics. Adv. Mater. 2016, 28, 4283–4305.CrossRefGoogle Scholar
  23. [23]
    Zhang, X. L.; Zheng, Y. B.; Wang, D. A.; Rahman, Z. U.; Zhou, F. Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water. Nano Energy 2016, 30, 321–329.CrossRefGoogle Scholar
  24. [24]
    Yang, Y.; Zhu, G.; Zhang, H. L.; Chen, J.; Zhong, X. D.; Lin, Z. H.; Su, Y. J.; Bai, P.; Wen, X. N.; Wang, Z. L. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 2013, 7, 9461–9468.CrossRefGoogle Scholar
  25. [25]
    Jin, L.; Deng, W. L.; Su, Y. C.; Xu, Z.; Meng, H.; Wang, B.; Zhang, H. P.; Zhang, B. B.; Zhang, L.; Xiao, X. B. et al. Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system. Nano Energy 2017, 38, 185–192.CrossRefGoogle Scholar
  26. [26]
    Xi, Y.; Guo, H. Y.; Zi, Y. L.; Li, X. G.; Wang, J.; Deng, J. N.; Li, S. M.; Hu, C. G.; Cao, X.; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered windspeed sensor. Adv. Energy Mater. 2017, 7, 1602397.CrossRefGoogle Scholar
  27. [27]
    Ma, M. Y.; Liao, Q. L.; Zhang, G. J.; Zhang, Z.; Liang, Q. J.; Zhang, Y. Self-recovering triboelectric nanogenerator as active multifunctional sensors. Adv. Funct. Mater. 2015, 25, 6489–6494.CrossRefGoogle Scholar
  28. [28]
    Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647–4655.CrossRefGoogle Scholar
  29. [29]
    Zhang, Q.; Liang, Q. J.; Liao, Q. L.; Yi, F.; Zheng, X.; Ma, M. Y.; Gao, F. F.; Zhang, Y. Service behavior of multifunctional triboelectric nanogenerators. Adv. Mater. 2017, 29, 1606703.CrossRefGoogle Scholar
  30. [30]
    Wang, S. H.; Wang, X.; Wang, Z. L.; Yang, Y. Efficient scavenging of solar and wind energies in a smart city. ACS Nano 2016, 10, 5696–5700.CrossRefGoogle Scholar
  31. [31]
    Jin, L.; Chen, J.; Zhang, B. B.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Huang, X.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 2016, 10, 7874–7881.CrossRefGoogle Scholar
  32. [32]
    Jeon, S.-B.; Kim, S.; Park, S. J.; Seol, M.-L.; Kim, D.; Chang, Y. K.; Choi, Y.-K. Self-powered electro-coagulation system driven by a wind energy harvesting triboelectric nanogenerator for decentralized water treatment. Nano Energy 2016, 28, 288–295.CrossRefGoogle Scholar
  33. [33]
    Zhu, H. R.; Tang, W.; Gao, C. Z.; Han, Y.; Li, T.; Cao, X.; Wang, Z. L. Self-powered metal surface anti-corrosion protection using energy harvested from rain drops and wind. Nano Energy 2015, 14, 193–200.CrossRefGoogle Scholar
  34. [34]
    Feng, Y. G.; Zheng, Y. B.; Rahman, Z. U.; Wang, D. A.; Zhou, F.; Liu, W. M. Paper-based triboelectric nanogenerators and their application in self-powered anticorrosion and antifouling. J. Mater. Chem. A 2016, 4, 18022–18030.CrossRefGoogle Scholar
  35. [35]
    Cui, S. W.; Zheng, Y. B.; Liang, J.; Wang, D. A. Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection. Chem. Sci. 2016, 7, 6477–6483.CrossRefGoogle Scholar
  36. [36]
    Xue, X. Y.; Fu, Y. M.; Wang, Q.; Xing, L. L.; Zhang, Y. Outputting olfactory bionic electric impulse by PANI/PTFE/PANI sandwich nanostructures and their application as flexible, smelling electronic skin. Adv. Funct. Mater. 2016, 26, 3128–3138.CrossRefGoogle Scholar
  37. [37]
    Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.CrossRefGoogle Scholar
  38. [38]
    Chiou, N. R.; Lu, C. M.; Guan, J. J.; Lee, L. J.; Epstein, A. J. Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. Nat. Nanotechnol. 2007, 2, 354–357.CrossRefGoogle Scholar
  39. [39]
    Diaz, A. F.; Felix-Navarro, R. M. A semi-quantitative triboelectric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 2004, 62, 277–290.CrossRefGoogle Scholar
  40. [40]
    Xie, Y. N.; Wang, S. H.; Lin, L.; Jing, Q. S.; Lin, Z. H.; Niu, S. M.; Wu, Z. Y.; Wang, Z. L. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. ACS Nano 2013, 7, 7119–7125.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Siwen Cui
    • 1
    • 2
  • Youbin Zheng
    • 1
  • Jun Liang
    • 1
  • Daoai Wang
    • 1
    Email author
  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations