Advertisement

Nano Research

, Volume 11, Issue 3, pp 1744–1754 | Cite as

Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases

  • Shun Feng
  • Chunxiao CongEmail author
  • Namphung Peimyoo
  • Yu Chen
  • Jingzhi Shang
  • Chenji Zou
  • Bingchen Cao
  • Lishu Wu
  • Jing Zhang
  • Mustafa Eginligil
  • Xingzhi Wang
  • Qihua Xiong
  • Arundithi Ananthanarayanan
  • Peng Chen
  • Baile Zhang
  • Ting YuEmail author
Research Article

Abstract

Two-dimensional transition metal dichalcogenides (2D TMDs) possess a tunable excitonic light emission that is sensitive to external conditions such as electric field, strain, and chemical doping. In this work, we reveal the interactions between DNA nucleobases, i.e., adenine (A), guanine (G), cytosine (C), and thymine (T) and monolayer WS2 by investigating the changes in the photoluminescence (PL) emissions of the monolayer WS2 after coating with nucleobase solutions. We found that adenine and guanine exert a clear effect on the PL profile of the monolayer WS2 and cause different PL evolution trends. In contrast, cytosine and thymine have little effect on the PL behavior. To obtain information on the interactions between the DNA bases and WS2, a series of measurements were conducted on adenine-coated WS2 monolayers, as a demonstration. The p-type doping of the WS2 monolayers on the introduction of adenine is clearly shown by both the evolution of the PL spectra and the electrical transport response. Our findings open the door for the development of label-free optical sensing approaches in which the detection signals arise from the tunable excitonic emission of the TMD itself rather than the fluorescence signals of label molecules. This dopant-selective optical response to the DNA nucleobases fills the gaps in previously reported optical biosensing methods and indicates a potential new strategy for DNA sequencing.

Keywords

tungsten disulfide photoluminescence optical biosensing chemical doping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported by the Singapore Ministry of Education under MOE Tier 1 RG178/15 and MOE Tier 1 RG100/15. C. X. C. thanks the support by the National Young 1000 Talent Plan of China and the Shanghai Municipal Natural Science Foundation (No. 16ZR1402500). M. E. appreciates the support by National Synergetic Innovation Center for Advanced Materials (SICAM), the start-up fund by Nanjing Tech University, and Jiangsu 100 Talent.

Supplementary material

12274_2017_1792_MOESM1_ESM.pdf (1.3 mb)
Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases

References

  1. [1]
    Berghäuser, G.; Malic, E. Analytical approach to excitonic properties of MoS2. Phys. Rev. B 2014, 89, 125309.CrossRefGoogle Scholar
  2. [2]
    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 2012, 86, 115409.CrossRefGoogle Scholar
  3. [3]
    Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of twodimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.CrossRefGoogle Scholar
  4. [4]
    Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.CrossRefGoogle Scholar
  5. [5]
    Huard, V.; Cox, R. T.; Saminadayar, K.; Arnoult, A.; Tatarenko, S. Bound states in optical absorption of semiconductor quantum wells containing a two-dimensional electron gas. Phys. Rev. Lett. 2000, 84, 187–190.CrossRefGoogle Scholar
  6. [6]
    Mak, K. F.; He, K. L.; Lee, C. G.; Lee, G. H.; Hone, J.; Heinz, T. F.; Shan, J. Tightly bound trions in monolayer MoS2. Nat. Mater. 2013, 12, 207–211.CrossRefGoogle Scholar
  7. [7]
    Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.CrossRefGoogle Scholar
  8. [8]
    Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.CrossRefGoogle Scholar
  9. [9]
    Nan, H. Y.; Wang, Z. L.; Wang, W. H.; Liang, Z.; Lu, Y.; Chen, Q.; He, D. W.; Tan, P. H.; Miao, F.; Wang, X. R. et al. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 2014, 8, 5738–5745.CrossRefGoogle Scholar
  10. [10]
    Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct–indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.CrossRefGoogle Scholar
  11. [11]
    Kim, E.; Ko, C.; Kim, K.; Chen, Y. B.; Suh, J.; Ryu, S.-G.; Wu, K. D.; Meng, X. Q.; Suslu, A.; Tongay, S. et al. Site selective doping of ultrathin metal dichalcogenides by laser-assisted reaction. Adv. Mater. 2016, 28, 341–346.CrossRefGoogle Scholar
  12. [12]
    Amani, M.; Lien, D.-H.; Kiriya, D.; Xiao, J.; Azcatl, A.; Noh, J.; Madhvapathy, S. R.; Addou, R.; KC, S.; Dubey, M. et al. Near-unity photoluminescence quantum yield in MoS2. Science 2015, 350, 1065–1068.CrossRefGoogle Scholar
  13. [13]
    Han, H. V.; Lu, A. Y.; Lu, L. S.; Huang, J. K.; Li, H. N.; Hsu, C. L.; Lin, Y. C.; Chiu, M. H.; Suenaga, K.; Chu, C. W. et al. Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano 2016, 10, 1454–1461.CrossRefGoogle Scholar
  14. [14]
    Tongay, S.; Zhou, J.; Ataca, C.; Liu, J.; Kang, J. S.; Matthews, T. S.; You, L.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 2013, 13, 2831–2836.CrossRefGoogle Scholar
  15. [15]
    Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.CrossRefGoogle Scholar
  16. [16]
    Vovusha, H.; Sanyal, B. Adsorption of nucleobases on 2D transition-metal dichalcogenides and graphene sheet: A first principles density functional theory study. RSC Adv. 2015, 5, 67427–67434.CrossRefGoogle Scholar
  17. [17]
    Farimani, A. B.; Min, K.; Aluru, N. R. DNA base detection using a single-layer MoS2. ACS Nano 2014, 8, 7914–7922.CrossRefGoogle Scholar
  18. [18]
    Sharma, M.; Kumar, A.; Ahluwalia, P. K. Optical fingerprints and electron transport properties of DNA bases adsorbed on monolayer MoS2. RSC Adv. 2016, 6, 60223–60230.CrossRefGoogle Scholar
  19. [19]
    Zhang, Y.; Zheng, B.; Zhu, C. F.; Zhang, X.; Tan, C. L.; Li, H.; Chen, B.; Yang, J.; Chen, J. Z.; Huang, Y. et al. Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 2015, 27, 935–939.CrossRefGoogle Scholar
  20. [20]
    Chen, J.; Gao, C. J.; Mallik, A. K.; Qiu, H. D. A WS2 nanosheet-based nanosensor for the ultrasensitive detection of small molecule–protein interaction via terminal protection of small molecule-linked DNA and Nt.BstNBI-assisted recycling amplification. J. Mater. Chem. B 2016, 4, 5161–5166.CrossRefGoogle Scholar
  21. [21]
    Zhao, J. J.; Jin, X.; Vdovenko, M.; Zhang, L. L.; Sakharov, I. Y.; Zhao, S. L. A WS2 nanosheet based chemiluminescence resonance energy transfer platform for sensing biomolecules. Chem. Commun. 2015, 51, 11092–11095.CrossRefGoogle Scholar
  22. [22]
    Macwan, I.; Khan, M. D. H.; Aphale, A.; Singh, S.; Liu, J.; Hingorani, M.; Patra, P. Interactions between avidin and graphene for development of a biosensing platform. Biosens. Bioelectron. 2017, 89, 326–333.CrossRefGoogle Scholar
  23. [23]
    Loan, P. T. K.; Zhang, W. J.; Lin, C. T.; Wei, K. H.; Li, L. J.; Chen, C. H. Graphene/MoS2 heterostructures for ultrasensitive detection of DNA hybridisation. Adv. Mater. 2014, 26, 4838–4844.CrossRefGoogle Scholar
  24. [24]
    Ananthanarayanan, A.; Wang, X. W.; Routh, P.; Sana, B.; Lim, S.; Kim, D. H.; Lim, K. H.; Li, J.; Chen, P. Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv. Funct. Mater. 2014, 24, 3021–3026.CrossRefGoogle Scholar
  25. [25]
    Ananthanarayanan, A.; Wang, Y.; Routh, P.; Sk, M. A.; Than, A.; Lin, M.; Zhang, J.; Chen, J.; Sun, H. D.; Chen, P. Nitrogen and phosphorus co-doped graphene quantum dots: Synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale 2015, 7, 8159–8165.CrossRefGoogle Scholar
  26. [26]
    Zeng, S. W.; Sreekanth, K. V.; Shang, J. Z.; Yu, T.; Chen, C. K.; Yin, F.; Baillargeat, D.; Coquet, P.; Ho, H. P.; Kabashin, A. V. et al. Graphene–gold metasurface architectures for ultrasensitive plasmonic biosensing. Adv. Mater. 2015, 27, 6163–6169.CrossRefGoogle Scholar
  27. [27]
    Li, Z.; Chen, Y.; Li, X.; Kamins, T.; Nauka, K.; Williams, R. S. Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett. 2004, 4, 245–247.CrossRefGoogle Scholar
  28. [28]
    Star, A.; Tu, E.; Niemann, J.; Gabriel, J.-C. P.; Joiner, C. S.; Valcke, C. Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. Proc. Natl. Acad. Sci. USA 2006, 103, 921–926.CrossRefGoogle Scholar
  29. [29]
    Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.CrossRefGoogle Scholar
  30. [30]
    Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.CrossRefGoogle Scholar
  31. [31]
    Beaudet, A. L.; Belmont, J. W. Array-based DNA diagnostics: Let the revolution begin. Annu. Rev. Med. 2008, 59, 113–129.CrossRefGoogle Scholar
  32. [32]
    Peimyoo, N.; Shang, J. Z.; Cong, C. X.; Shen, X. N.; Wu, X. Y.; Yeow, E. K. L.; Yu, T. Nonblinking, intense twodimensional light emitter: Monolayer WS2 triangles. ACS Nano 2013, 7, 10985–10994.CrossRefGoogle Scholar
  33. [33]
    Cong, C. X.; Shang, J. Z.; Wu, X.; Cao, B. C.; Peimyoo, N.; Qiu, C. Y.; Sun, L. T.; Yu, T. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition. Adv. Opt. Mater. 2014, 2, 131–136.CrossRefGoogle Scholar
  34. [34]
    Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C. et al. Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 2013, 3, 1755.CrossRefGoogle Scholar
  35. [35]
    Zeng, H. L.; Liu, G.-B.; Dai, J. F.; Yan, Y. J.; Zhu, B. R.; He, R. C.; Xie, L.; Xu, S. J.; Chen, X. H.; Yao, W. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608.CrossRefGoogle Scholar
  36. [36]
    Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.CrossRefGoogle Scholar
  37. [37]
    Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.CrossRefGoogle Scholar
  38. [38]
    Ryder, C. R.; Wood, J. D.; Wells, S. A.; Hersam, M. C. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 2016, 10, 3900–3917.CrossRefGoogle Scholar
  39. [39]
    Cho, B.; Yoon, J.; Lim, S. K.; Kim, A. R.; Kim, D.-H.; Park, S.-G.; Kwon, J.-D.; Lee, Y.-J.; Lee, K.-H.; Lee, B. H. et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775–16780.CrossRefGoogle Scholar
  40. [40]
    Liang, L. J.; Hu, W.; Xue, Z. Y.; Shen, J.-W. Theoretical study on the interaction of nucleotides on two-dimensional atomically thin graphene and molybdenum disulfide. FlatChem 2017, 2, 8–14.CrossRefGoogle Scholar
  41. [41]
    Dontschuk, N.; Stacey, A.; Tadich, A.; Rietwyk, K. J.; Schenk, A.; Edmonds, M. T.; Shimoni, O.; Pakes, C. I.; Prawer, S.; Cervenka, J. A graphene field-effect transistor as a molecule-specific probe of DNA nucleobases. Nat. Commun. 2015, 6, 6563.CrossRefGoogle Scholar
  42. [42]
    Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J.-C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.CrossRefGoogle Scholar
  43. [43]
    Lee, J.-H.; Choi, Y.-K.; Kim, H.-J.; Scheicher, R. H.; Cho, J.-H. Physisorption of DNA nucleobases on h-BN and graphene: vdW-corrected DFT calculations. J. Phys. Chem. C 2013, 117, 13435–13441.CrossRefGoogle Scholar
  44. [44]
    Hawke, L. G. D.; Kalosakas, G.; Simserides, C. Electronic parameters for charge transfer along DNA. Eur. Phys. J. E 2010, 32, 291.CrossRefGoogle Scholar
  45. [45]
    Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.CrossRefGoogle Scholar
  46. [46]
    Xi, Q.; Zhou, D.-M.; Kan, Y.-Y.; Ge, J.; Wu, Z.-K.; Yu, R.-Q.; Jiang, J.-H. Highly sensitive and selective strategy for microRNA detection based on WS2 nanosheet mediated fluorescence quenching and duplex-specific nuclease signal amplification. Anal. Chem. 2014, 86, 1361–1365.CrossRefGoogle Scholar
  47. [47]
    Wang, Z.; Dong, Z. G.; Gu, Y. H.; Chang, Y.-H.; Zhang, L.; Li, L.-J.; Zhao, W. J.; Eda, G.; Zhang, W. J.; Grinblat, G. et al. Giant photoluminescence enhancement in tungstendiselenide–gold plasmonic hybrid structures. Nat. Commun. 2016, 7, 11283.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Shun Feng
    • 1
  • Chunxiao Cong
    • 2
    Email author
  • Namphung Peimyoo
    • 1
  • Yu Chen
    • 1
  • Jingzhi Shang
    • 1
  • Chenji Zou
    • 1
  • Bingchen Cao
    • 1
  • Lishu Wu
    • 1
  • Jing Zhang
    • 1
  • Mustafa Eginligil
    • 3
  • Xingzhi Wang
    • 1
  • Qihua Xiong
    • 1
  • Arundithi Ananthanarayanan
    • 4
  • Peng Chen
    • 4
  • Baile Zhang
    • 1
  • Ting Yu
    • 1
    Email author
  1. 1.Division of Physics and Applied Physics, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Information Science and TechnologyFudan UniversityShanghaiChina
  3. 3.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingChina
  4. 4.Division of Bioengineering, School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations