Advertisement

Nano Research

, Volume 11, Issue 3, pp 1731–1743 | Cite as

In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries

  • Shizhi Huang
  • Lingli Zhang
  • Jingyan Wang
  • Jinliang ZhuEmail author
  • Pei Kang ShenEmail author
Research Article

Abstract

Carbon nanotube (CNT) clusters grown in situ in three-dimensional (3D) porous graphene networks (3DG-CNTs), with integrated structure and remarkable electronic conductivity, are desirable S host materials for Li–S batteries. 3DG-CNT exhibits a high surface area (1,645 m2·g−1), superior electronic conductivity of 1,055 S·m−1, and a 3D porous networked structure. Large clusters of CNTs anchored on the inner walls of 3D graphene networks act as capillaries, benefitting restriction of agglomeration by high contents of immersed S. Moreover, the capillary-like CNT clusters grown in situ in the pores efficiently form restricted spaces for Li polysulfides, significantly reducing the shuttling effect and promoting S utilization throughout the charge/discharge process. With an areal S mass loading of 81.6 wt.%, the 3DG-CNT/S electrode exhibits an initial specific capacity reaching 1,229 mA·h·g−1 at 0.5 C and capacity decays of 0.044% and 0.059% per cycle at 0.5 and 1 C, respectively, over 500 cycles. The electrode material also reveals a remarkable rate performance and the large capacity of 812 mA·h·g−1 at 3 C.

Keywords

in situ growth carbon nanotube three-dimensional (3D) graphene porous network Li–S battery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Innovation Project of Guangxi Graduate Education (No. P3090098101), the China Postdoctoral Science Foundation (No. 2017M612864), the Major International (Regional) Joint Research Project (No. 51210002), the National Basic Research Program of China (No. 2015CB932304) and the Natural Science Foundation of Guangdong province (No. 2015A030312007).

Supplementary material

12274_2017_1791_MOESM1_ESM.pdf (7.2 mb)
In situ carbon nanotube clusters grown from three-dimensional porous graphene networks as efficient sulfur hosts for high-rate ultra-stable Li–S batteries

References

  1. [1]
    Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.CrossRefGoogle Scholar
  2. [2]
    Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.CrossRefGoogle Scholar
  3. [3]
    Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.CrossRefGoogle Scholar
  4. [4]
    Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.CrossRefGoogle Scholar
  5. [5]
    Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li-O2 and Li-S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.CrossRefGoogle Scholar
  6. [6]
    Zhu, J. L.; Li, Y. Y.; Kang, S.; Wei, X. L.; Shen, P. K. One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. J. Mater. Chem. A 2014, 2, 3142–3147.CrossRefGoogle Scholar
  7. [7]
    Ji, X. L.; Nazar, L. F. Advances in Li–S batteries. J. Mater. Chem. 2010, 20, 9821–9826.CrossRefGoogle Scholar
  8. [8]
    Choi, S. H.; Ko, Y. N.; Lee, J. K.; Kang, Y. C. 3D MoS2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater. 2015, 25, 1780–1788.CrossRefGoogle Scholar
  9. [9]
    Fei, L. F.; Li, X. G.; Bi, W. T.; Zhuo, Z. W.; Wei, W. F.; Sun, L.; Lu, W.; Wu, X. J.; Xie, K. Y.; Wu, C. Z. et al. Graphene/sulfur hybrid nanosheets from a space-confined “sauna” reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2015, 27, 5936–5942.CrossRefGoogle Scholar
  10. [10]
    Xiao, Z. B.; Yang, Z.; Wang, L.; Nie, H. G.; Zhong, M. E.; Lai, Q. Q.; Xu, X. J.; Zhang, L. J.; Huang, S. M. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater. 2015, 27, 2891–2898.CrossRefGoogle Scholar
  11. [11]
    Zhu, L.; Peng, H.-J.; Liang, J. Y.; Huang, J. Q.; Chen, C. M.; Guo, X. F.; Zhu, W. C.; Li, P.; Zhang, Q. Interconnected carbon nanotube/graphene nanosphere scaffolds as freestanding paper electrode for high-rate and ultra-stable lithium–sulfur batteries. Nano Energy 2015, 11, 746–755.CrossRefGoogle Scholar
  12. [12]
    Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.CrossRefGoogle Scholar
  13. [13]
    Xi, K.; Kidambi, P. R.; Chen, R. J.; Cao, C. L.; Peng, X. Y.; Ducati, C.; Hofmann, S.; Kumar, R. V. Binder free threedimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale 2014, 6, 5746–5753.CrossRefGoogle Scholar
  14. [14]
    Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for highperformance lithium-sulfur batteries. Nat. Commun. 2016, 7, 10601.CrossRefGoogle Scholar
  15. [15]
    Fang, R. P.; Zhao, S. Y.; Hou, P. X.; Cheng, M.; Wang, S. G.; Cheng, H. M.; Liu, C.; Li, F. 3D interconnected electrode materials with ultrahigh areal sulfur loading for Li-S batteries. Adv. Mater. 2016, 28, 3374–3382.CrossRefGoogle Scholar
  16. [16]
    Li, Y. Y.; Li, Z. S.; Zhang, Q. W.; Shen, P. K. Sulfurinfiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium-sulfur batteries. J. Mater. Chem. A 2014, 2, 4528–4533.CrossRefGoogle Scholar
  17. [17]
    Zhen, L.; Zhang, J. T.; Lou, X. W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 12866–12890.Google Scholar
  18. [18]
    Choi, Y. J.; Jung, B. S.; Lee, D. J.; Jeong, J. H.; Kim, K. W.; Ahn, H. J.; Cho, K. K.; Gu, H. B. Electrochemical properties of sulfur electrode containing nano Al2O3 for lithium/sulfur cell. Phys. Scr. 2007, T129, 62–65.CrossRefGoogle Scholar
  19. [19]
    Seh, Z. W.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.CrossRefGoogle Scholar
  20. [20]
    Fanous, J.; Wegner, M.; Grimminger, J.; Andresen, Ä.; Buchmeiser, M. R. Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries. Chem. Mater. 2011, 23, 5024–5028.CrossRefGoogle Scholar
  21. [21]
    Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.CrossRefGoogle Scholar
  22. [22]
    Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 2011, 11, 4288–4294.CrossRefGoogle Scholar
  23. [23]
    Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2012, 51, 3591–3595.CrossRefGoogle Scholar
  24. [24]
    Ji, L. W.; Rao, M. M.; Zheng, H. M.; Zhang, L.; Li, Y. C.; Duan, W. H.; Guo, J. H.; Cairns, E. J.; Zhang, Y. G. Graphene oxide as a sulfur immobilizer in high performance lithium/ sulfur cells. J. Am. Chem. Soc. 2011, 133, 18522–18525.CrossRefGoogle Scholar
  25. [25]
    Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.CrossRefGoogle Scholar
  26. [26]
    Jin, F. Y.; Xiao, S.; Lu, L. J.; Wang, Y. Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium–sulfur batteries. Nano Lett. 2016, 16, 440–447.CrossRefGoogle Scholar
  27. [27]
    Tang, C.; Zhang, Q.; Zhao, M. Q.; Huang, J. Q.; Cheng, X. B.; Tian, G. L.; Peng, H. J.; Wei, F. Nitrogen-doped aligned carbon nanotube/graphene sandwiches: Facile catalytic growth on bifunctional natural catalysts and their applications as scaffolds for high-rate lithium-sulfur batteries. Adv. Mater. 2014, 26, 6100–6105.CrossRefGoogle Scholar
  28. [28]
    Chen, R. J.; Zhao, T.; Lu, J.; Wu, F.; Li, L.; Chen, J. Z.; Tan, G. Q.; Ye, Y. S.; Amine, K. Graphene-based threedimensional hierarchical sandwich-type architecture for high-performance Li/S batteries. Nano Lett. 2013, 13, 4642–4649.CrossRefGoogle Scholar
  29. [29]
    Bae, S. H.; Karthikeyan, K.; Lee, Y. S.; Oh, I. K. Microwave self-assembly of 3D graphene-carbon nanotube-nickel nanostructure for high capacity anode material in lithium ion battery. Carbon 2013, 64, 527–536.CrossRefGoogle Scholar
  30. [30]
    Dichiara, A. B.; Sherwood, T. J.; Benton-Smith, J.; Wilson, J. C.; Weinstein, S. J.; Rogers, R. E. Free-standing carbon nanotube/graphene hybrid papers as next generation adsorbents. Nanoscale 2014, 6, 6322–6327.CrossRefGoogle Scholar
  31. [31]
    Wang, D. W.; Zeng, Q. C.; Zhou, G. M.; Yin, L. C.; Li, F.; Cheng, H. M.; Gentle, I. R.; Lu, G. Q. M. Carbon–sulfur composites for Li–S batteries: Status and prospects. J. Mater. Chem. A 2013, 1, 9382–9394.CrossRefGoogle Scholar
  32. [32]
    Zhang, C.; Liu, D. H.; Lv, W.; Wang, D. W.; Wei, W.; Zhou, G. M.; Wang, S. G.; Li, F.; Li, B. H.; Kang, F. Y. et al. A highdensity graphene-sulfur assembly: A promising cathode for compact Li-S batteries. Nanoscale 2015, 7, 5592–5597.CrossRefGoogle Scholar
  33. [33]
    He, J. R.; Chen, Y. F.; Li, P. J.; Fu, F.; Wang, Z. G.; Zhang, W. L. Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries. J. Mater. Chem. A 2015, 3, 18605–18610.CrossRefGoogle Scholar
  34. [34]
    Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 2009, 9, 4268–4272.CrossRefGoogle Scholar
  35. [35]
    Nolan, P. E.; Lynch, D. C.; Cutler, A. H. Catalytic disproportionation of CO in the absence of hydrogen: Encapsulating shell carbon formation. Carbon 1994, 32, 477–483.CrossRefGoogle Scholar
  36. [36]
    Orofeo, C. M.; Ago, H.; Hu, B. S.; Tsuji, M. Synthesis of large area, homogeneous, single layer graphene films by annealing amorphous carbon on Co and Ni. Nano Res. 2011, 4, 531–540.CrossRefGoogle Scholar
  37. [37]
    Huang, S. Z.; Zhang, L. L.; Zhu, J. L.; Jiang, S. P.; Shen, P. K. Crumpled nitrogen- and boron-dual-self-doped graphene sheets as an extraordinary active anode material for lithium ion batteries. J. Mater. Chem. A 2016, 4, 14155–14162.CrossRefGoogle Scholar
  38. [38]
    Lillo-Ródenas, M. A.; Juan-Juan, J.; Cazorla-Amorós, D.; Linares-Solano, A. About reactions occurring during chemical activation with hydroxides. Carbon 2004, 42, 1371–1375.CrossRefGoogle Scholar
  39. [39]
    Andrews, R.; Jacques, D.; Qian, D.; Dickey, E. C. Purification and structural annealing of multiwalled carbon nanotubes at graphitization temperatures. Carbon 2001, 39, 1681–1687.CrossRefGoogle Scholar
  40. [40]
    Huang, S. Z.; Wang, J. Y.; Pan, Z. Y.; Zhu, J. L.; Shen, P. K. Ultrahigh capacity and superior stability of three-dimensional porous graphene networks containing in situ grown carbon nanotube clusters as an anode material for lithium-ion batteries. J. Mater. Chem. A 2017, 5, 7595–7602.CrossRefGoogle Scholar
  41. [41]
    Xu, W. G.; Mao, N. N.; Zhang, J. Graphene: A platform for surface-enhanced Raman spectroscopy. Small 2013, 9, 1206–1224.CrossRefGoogle Scholar
  42. [42]
    Ryu, Z. Y.; Zheng, J. T.; Wang, M. Z.; Zhang, B. J. Characterization of pore size distributions on carbonaceous adsorbents by DFT. Carbon 1999, 37, 1257–1264.CrossRefGoogle Scholar
  43. [43]
    Bao, W. Z.; Su, D. W.; Zhang, W. X.; Guo, X.; Wang, G. X. 3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 8746–8756.CrossRefGoogle Scholar
  44. [44]
    Wei, S. Y.; Ma, L.; Hendrickson, K. E.; Tu, Z. Y.; Archer, L. A. Metal-sulfur battery cathodes based on PAN-sulfur composites. J. Am. Chem. Soc. 2015, 137, 12143–12152.CrossRefGoogle Scholar
  45. [45]
    Chen, S. Q.; Sun, B.; Xie, X. Q.; Mondal, A. K.; Huang, X. D.; Wang, G. X. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life. Nano Energy. 2015, 16, 268–280.CrossRefGoogle Scholar
  46. [46]
    Xu, J.; Su, D. W.; Zhang, W. X.; Bao, W. Z.; Wang, G. X. A nitrogen-sulfur co-doped porous graphene matrix as a sulfur immobilizer for high performance lithium-sulfur batteries. J. Mater. Chem. A, 2016, 4, 17381–17393.CrossRefGoogle Scholar
  47. [47]
    Zhao, M. Q.; Zhang, Q.; Huang, J. Q.; Tian, G. L.; Nie, J. Q.; Peng, H. J.; Wei, F. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 2014, 5, 3410.CrossRefGoogle Scholar
  48. [48]
    Kim, J.; Lee, D.-J.; Jung, H.-G.; Sun, Y.-K.; Hassoun, J.; Scrosati, B. An advanced lithium-sulfur battery. Adv. Funct. Mater. 2013, 23, 1076–1080.CrossRefGoogle Scholar
  49. [49]
    Ye, H.; Yin, Y.-X.; Guo, Y.-G. Insight into the loading temperature of sulfur on sulfur/carbon cathode in lithiumsulfur batteries. Electrochim. Acta 2015, 185, 62–68.CrossRefGoogle Scholar
  50. [50]
    Zhang, J.; Yang, C.-P.; Yin, Y.-X.; Wan, L.-J.; Guo, Y.-G. Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium-sulfur batteries. Adv. Mater. 2016, 28, 9539–9544.CrossRefGoogle Scholar
  51. [51]
    Du, W.-C.; Yin, Y.-X.; Zeng, X.-X.; Shi, J.-L.; Zhang, S.-F.; Wan, L.-J.; Guo, Y.-G. Wet chemistry synthesis of multidimensional nanocarbon-sulfur hybrid materials with ultrahigh sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2016, 8, 3584–3590.CrossRefGoogle Scholar
  52. [52]
    Yang, C.-P.; Yin, Y.-X.; Guo, Y.-G.; Wan, L.-J. Electrochemical (de)lithiation of 1D sulfur chains in Li-S batteries: A model system study. J. Am. Chem. Soc. 2015, 137, 2215–2218.CrossRefGoogle Scholar
  53. [53]
    Xin, S.; Gu, L.; Zhao, N.-H.; Yin, Y.-X.; Zhou, L.-J.; Guo, Y.-G.; Wan, L.-J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.CrossRefGoogle Scholar
  54. [54]
    Tang, C.; Li, B.-Q.; Zhang, Q.; Zhu, L.; Wang, H.-F.; Shi, J.-L.; Wei, F. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications. Adv. Funct. Mater. 2016, 26, 577–585.CrossRefGoogle Scholar
  55. [55]
    Su, D. W.; Cortie, M.; Wang, G. X. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1602014.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Electrochemical Energy Materials, Collaborative Innovation Center of Renewable Energy Materials, State Key Laboratory of Processing for Non-ferrous Metal and Featured MaterialsGuangxi UniversityNanningChina
  2. 2.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina

Personalised recommendations