Advertisement

Nano Research

, Volume 11, Issue 3, pp 1722–1730 | Cite as

Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors

  • Fengren Cao
  • Qingliang Liao
  • Kaimo Deng
  • Liang Chen
  • Liang LiEmail author
  • Yue ZhangEmail author
Research Article

Abstract

Methylammonium lead halide perovskites have been reported to be promising candidates for high-performance photodetectors. However, self-powered broadband ultraviolet-visible-near infrared (UV-Vis-NIR) photodetection with high responsivity is difficult to achieve in these materials. Here, we demonstrate, for the first time, a novel trilayer hybrid photodetector made by combining an n-type Si wafer, TiO2 interlayer and perovskite film. By precisely controlling the thickness of the TiO2 layer, enhanced separation and reduced recombination of carriers at the Si–perovskite interface are obtained. As a result, perovskite film, when combined with a low-bandgap Si, extends the wavelength range of photo response to 1,150 nm, along with improved on/off ratio, responsivity, and specific detectivity, when compared to pristine perovskite. Results obtained in this work are comparable or even better than those reported for perovskite-based UV-Vis-NIR photodetectors. In particular, the hybrid photodetectors can operate in a self-powered mode. The mechanism of enhancement has been explored and it is found that the increased separation and reduced recombination of photogenerated carriers at the junction interface leads to the improved performance.

Keywords

perovskite hybrid Si atomic layer deposition photodetector 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51672026, 51422206, 51372020, and 51372159), the National Key Research and Development Program of China (No. 2016YFA0202701), the Major National Scientific Research Projects (No. 2013CB932602), 1000 Youth Talents Plan, 333 High-level Talents Cultivation Project of Jiangsu Province, Six Talents Peak Project of Jiangsu Province, Distinguished Young Scholars Foundation by Jiangsu Science and Technology Committee (No. BK20140009), and Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Supplementary material

12274_2017_1790_MOESM1_ESM.pdf (2 mb)
Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors

References

  1. [1]
    Huang, M. Q.; Wang, M. L.; Chen, C.; Ma, Z. W.; Li, X. F.; Han J. B.; Wu, Y. Q. Broadband black-phosphorus photodetectors with high responsivity. Adv. Mater. 2016, 28, 3481–3485.CrossRefGoogle Scholar
  2. [2]
    Chen, X. L.; Li, H. L.; Qi, Z. Y.; Yang, T. F.; Yang, Y. K.; Hu, X. L.; Zhang, X. H.; Zhu, X. L.; Zhuang, X. J.; Hu W. et al. Synthesis and optoelectronic properties of quaternary GaInAsSb alloy nanosheets. Nanotechnology 2016, 27, 505602.CrossRefGoogle Scholar
  3. [3]
    Ma, L.; Hu, W.; Zhang, Q. L.; Ren, P. Y.; Zhuang, X. J.; Zhou, H.; Xu, J. Y.; Li, H. L.; Shan, Z. P.; Wang, X. X. et al. Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett. 2014, 14, 694–698.CrossRefGoogle Scholar
  4. [4]
    Xie, Y.; Gong, M. G.; Shastry, T. A.; Lohrman, J.; Hersam, M. C.; Ren, S. Q. Broad-spectral-response nanocarbon bulkheterojunction excitonic photodetectors. Adv. Mater. 2013, 25, 3433–3437.CrossRefGoogle Scholar
  5. [5]
    Fang, Y. J.; Huang, J. S. Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction. Adv. Mater. 2015, 27, 2804–2810.CrossRefGoogle Scholar
  6. [6]
    Ren, P. Y.; Hu, W.; Zhang, Q. L.; Zhu, X. L.; Zhuang, X. J.; Ma, L.; Fan, X. P.; Zhou, H.; Liao, L.; Duan, X. F. et al. Band-selective infrared photodetectors with completecomposition- range InAsxP1–x alloy nanowires. Adv. Mater. 2014, 26, 7444–7449.CrossRefGoogle Scholar
  7. [7]
    Dong, R.; Fang, Y. J.; Chae, J.; Dai, J.; Xiao, Z. G.; Dong, Q. F.; Yuan, Y. B.; Centrone, A.; Zeng, X. C.; Huang, J. S. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Adv. Mater. 2015, 27, 1912–1918.CrossRefGoogle Scholar
  8. [8]
    Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.CrossRefGoogle Scholar
  9. [9]
    Kazim, S.; Nazeeruddin, M. K.; Grä tzel M.; Ahmad, S. Perovskite as light harvester: A game changer in photovoltaics. Angew. Chem., Int. Ed. 2014, 53, 2812–2824.CrossRefGoogle Scholar
  10. [10]
    Saidaminov, M. I.; Haque, M. Z.; Savoie, M.; Abdelhady, A. L.; Cho, N.; Dursun, I.; Buttner, U.; Alarousu, E.; Wu, T.; Bakr, O. M. Perovskite photodetectors operating in both narrowband and broadband regimes. Adv. Mater. 2016, 28, 8144–8149.CrossRefGoogle Scholar
  11. [11]
    Saidaminov, M. I.; Adinolfi, V.; Comin, R.; Abdelhady, A. L.; Peng, W.; Dursun, I.; Yuan, M. J.; Hoogland, S.; Sargent E. H.; Bakr, O. M. Planar-integrated single-crystalline perovskite photodetectors. Nat. Commun. 2015, 6, 8724.CrossRefGoogle Scholar
  12. [12]
    Lu, H.; Tian, W.; Cao, F. R.; Ma, Y. L.; Gu, B. K.; Li, L. A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater. 2016, 26, 1296–1302.CrossRefGoogle Scholar
  13. [13]
    Wang, F.; Mei, J. J.; Wang, Y. P.; Zhang, L. G.; Zhao H. F.; Zhao, D. X. Fast photoconductive responses in organometal halide perovskite photodetectors. ACS Appl. Mater. Interfaces 2016, 8, 2840–2846.CrossRefGoogle Scholar
  14. [14]
    Zhou, J. C.; Chu, Y. L.; Huang, J. Photodetectors based on two-dimensional layer-structured hybrid lead iodide perovskite semiconductors. ACS Appl. Mater.Interfaces 2016, 8, 25660–25666.CrossRefGoogle Scholar
  15. [15]
    Cao, F. R.; Tian, W.; Gu, B. K.; Ma, Y. L.; Lu H.; Li, L. Highperformance UV-vis photodetectors based on electrospun ZnO nanofiber-solution processed perovskite hybrid structures. Nano Res. 2017, 7, 2244–2256.CrossRefGoogle Scholar
  16. [16]
    Deng, W.; Huang, L. M.; Xu, X. Z.; Zhang, X. J.; Jin, X. C.; Lee, S. T.; Jie, J. S. Ultrahigh-responsivity photodetectors from perovskite nanowire arrays for sequentially tunable spectral measurement. Nano Lett. 2017, 17, 2482–2489.CrossRefGoogle Scholar
  17. [17]
    Aharon, S.; Etgar, L. Two dimensional organometal halide perovskite nanorods with tunable optical properties. Nano Lett. 2016, 16, 3230–3235.CrossRefGoogle Scholar
  18. [18]
    Liu, C.; Wang, K.; Du, P. C.; Wang, E. M.; Gong X.; Heeger, A. J. Ultrasensitive solution-processed broad-band photodetectors using CH3NH3PbI3 perovskite hybrids and PbS quantum dots as light harvesters. Nanoscale 2015, 7, 16460–16469.CrossRefGoogle Scholar
  19. [19]
    Chen, S.; Teng, C. J.; Zhang, M.; Li, Y. R.; Xie D.; Shi, G. Q. A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite. Adv. Mater. 2016, 28, 5969–5974.CrossRefGoogle Scholar
  20. [20]
    Zhang, X. H.; Yang, S. Z.; Zhou, H.; Liang, J. W.; Liu, H. W.; Xia, H.; Zhu, X. L.; Jiang, Y.; Zhang, Q. L.; Hu, W. et al. Perovskite-erbium silicate nanosheet hybrid waveguide photodetectors at the near-infrared telecommunication band. Adv. Mater. 2017, 29, 1604431.CrossRefGoogle Scholar
  21. [21]
    Yao, J. D.; Shao, J. M.; Wang, Y. X.; Zhao Z. R.; Yang, G. W. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541.CrossRefGoogle Scholar
  22. [22]
    Wang, L.; Jie, J. S.; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, highdetectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.CrossRefGoogle Scholar
  23. [23]
    Zhao, C. X.; Liang, Z. M.; Su, M. Z.; Liu, P. Y.; Mai, W. J.; Xie, W. G. Self-powered, high-speed and visible-near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering. ACS Appl. Mater. Interfaces 2015, 7, 25981–25990.Google Scholar
  24. [24]
    Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan D. B. et al. Highly responsive ultrathin GaSnanosheetphotodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649–1654.CrossRefGoogle Scholar
  25. [25]
    Zhou, X.; Zhang, Q.; Gan, L.; Li, X.; Li, H. Q.; Zhang, Y.; Golberg, D.; Zhai, T. Y. High-performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 2016, 26, 704–712.CrossRefGoogle Scholar
  26. [26]
    Savenije, T. J.; Ponseca, C. S. Jr.; Kunneman, L.; Abdellah, M.; Zheng, K. B.; Tian, Y. X.; Zhu, Q. S.; Canton, S. E.; Scheblykin, I. G.; Pullerits, T. et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J. Phys. Chem. Lett. 2014, 5, 2189–2194.CrossRefGoogle Scholar
  27. [27]
    Ma, C.; Shi, Y. M.; Hu, W. J.; Chiu, M. H.; Liu, Z. X.; Bera, A.; Li, F.; Wang, H.; Li, L. J.; Wu, T. Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 2016, 28, 3683–3689.CrossRefGoogle Scholar
  28. [28]
    Dymshits, A.; Henning, A.; Segev, G.; Rosenwaks, Y.; Etgar, L. The electronic structure of metal oxide/organo metal halide perovskite junctions in perovskite based solar cells. Sci. Rep. 2015, 5, 8704.CrossRefGoogle Scholar
  29. [29]
    Song, D. Y.; Guo, B. Z. Electrical properties and carrier transport mechanisms of n-ZnO/SiOx/n-Si isotype heterojunctions with native or thermal oxide interlayers. J. Phys. DAppl. Phys. 2009, 42, 025103.CrossRefGoogle Scholar
  30. [30]
    Hwang, Y. J.; Boukai A.; Yang, P. D. High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. Nano Lett. 2009, 9, 410–415.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.College of Physics, Optoelectronics and Energy, Center for Energy Conversion Materials & Physics (CECMP), Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhouChina
  2. 2.State Key Laboratory for Advanced Metals and Materials, School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations