Nano Research

, Volume 11, Issue 3, pp 1714–1721 | Cite as

Direct imaging and determination of the crystal structure of six-layered graphdiyne

  • Chao Li
  • Xiuli Lu
  • Yingying Han
  • Shangfeng Tang
  • Yi Ding
  • Ruirui Liu
  • Haihong Bao
  • Yuliang Li
  • Jun LuoEmail author
  • Tongbu LuEmail author
Research Article


Since its discovery, the direct imaging and determination of the crystal structure of few-layer graphdiyne has proven difficult because it is too delicate under irradiation by an electron beam. In this work, the crystal structure of a six-layered graphdiyne nanosheet was directly observed by low-voltage transmission electron microscopy (TEM) using low current density. The combined use of high-resolution TEM (HRTEM) simulation, electron energy-loss spectroscopy, and electron diffraction revealed that the as-synthesized nanosheet was crystalline graphdiyne with a thickness of 2.19 nm (corresponding to a thickness of six layers) and showed ABC stacking. Thus, this work provides direct evidence for the existence and crystal structure of few-layer graphdiyne, which is a new type of two-dimensional carbon material complementary to graphene.


few-layer graphdiyne crystal structure low-voltage transmission electron microscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 11604241, 21790052 and 21331007), the National Program for Thousand Young Talents of China, the Postdoctoral Science Foundation of China (No. 2015M580209), the Tianjin Municipal Education Commission, the Tianjin Municipal Science and Technology Commission (No. 15JCYBJC52600), and the Fundamental Research Fund of Tianjin University of Technology.

Supplementary material

12274_2017_1789_MOESM1_ESM.pdf (1.6 mb)
Direct imaging and determination of the crystal structure of six-layered graphdiyne


  1. [1]
    Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Carbon nanotubes-the route toward applications. Science 2002, 297, 787–792.CrossRefGoogle Scholar
  2. [2]
    Baughman, R. H.; Eckhardt, H.; Kertesz, M. Structure-property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms. J. Chem. Phys. 1987, 87, 6687–6699.CrossRefGoogle Scholar
  3. [3]
    Coluci, V. R.; Galvão, D. S.; Baughman, R. H. Theoretical investigation of electromechanical effects for graphyne carbon nanotubes. J. Chem. Phys. 2004, 121, 3228–3237.CrossRefGoogle Scholar
  4. [4]
    Li, Y. J.; Xu, L.; Liu, H. B.; Li, Y. L. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. 2014, 43, 2572–2586.CrossRefGoogle Scholar
  5. [5]
    Chen, J. M.; Xi, J. Y.; Wang, D; Shuai, Z. G. Carrier mobility in graphyne should be even larger than that in graphene: A theoretical prediction. J. Phys. Chem. Lett. 2013, 4, 1443–1448.CrossRefGoogle Scholar
  6. [6]
    Jin, Z. W.; Zhou, Q.; Chen, Y. H.; Mao, P.; Li, H.; Liu, H. B.; Wang, J. Z.; Li, Y. L. Graphdiyne: ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater. 2016, 28, 3697–3702.CrossRefGoogle Scholar
  7. [7]
    Xiao, J. Y.; Shi, J. J.; Liu, H. B.; Xu, Y. Z.; Lv, S. T.; Luo, Y. H.; Li, D. M.; Meng, Q. B.; Li, Y. L. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material. Adv. Energy Mater. 2015, 5, 1401493.Google Scholar
  8. [8]
    Li, G. X.; Li, Y. L.; Qian, X. M.; Liu, H. B.; Lin, H. W.; Chen, N.; Li, Y. J. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission. J. Phys. Chem. C 2011, 115, 2611–2615.CrossRefGoogle Scholar
  9. [9]
    Huang, C. S.; Zhang, S. L.; Liu, H. B.; Li, Y. J.; Cui, G. L.; Li, Y. L. Graphdiyne for high capacity and long-life lithium storage. Nano Energy 2015, 11, 481–489.CrossRefGoogle Scholar
  10. [10]
    Zhang, S. L.; Liu, H. B.; Huang, C. S.; Cui, G. L.; Li, Y. L. Bulk graphdiyne powder applied for highly efficient lithium storage. Chem. Commun. 2015, 51, 1834–1837.CrossRefGoogle Scholar
  11. [11]
    Yang, N. L.; Liu, Y. Y.; Wen, H.; Tang, Z. Y.; Zhao, H. J.; Li, Y. L.; Wang, D. Photocatalytic properties of graphdiyne and graphene modified TiO2: From theory to experiment. ACS Nano 2013, 7, 1504–1512.CrossRefGoogle Scholar
  12. [12]
    Zhang, X.; Zhu, M. S.; Chen, P. L.; Li, Y. J.; Liu, H. B.; Li, Y. L.; Liu, M. H. Pristine graphdiyne-hybridized photocatalysts using graphene oxide as a dual-functional coupling reagent. Phys. Chem. Chem. Phys. 2015, 17, 1217–1225.CrossRefGoogle Scholar
  13. [13]
    Li, J.; Gao, X.; Liu, B.; Feng, Q. L.; Li, X. B.; Huang, M. Y.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 2016, 138, 3954–3957.CrossRefGoogle Scholar
  14. [14]
    Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.CrossRefGoogle Scholar
  15. [15]
    Qian, X. M.; Ning, Z. Y.; Li, Y. L.; Liu, H. B.; Ouyang, C. B.; Chen, Q.; Li, Y. J. Construction of graphdiyne nanowires with high-conductivity and mobility. Dalton Trans. 2012, 41, 730–733.CrossRefGoogle Scholar
  16. [16]
    Zhou, J. Y.; Gao, X.; Liu, R.; Xie, Z. Q.; Yang, J.; Zhang, S. Q.; Zhang, G. M.; Liu, H. B.; Li, Y. L.; Zhang, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 2015, 137, 7596−7599.CrossRefGoogle Scholar
  17. [17]
    Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145–3152.CrossRefGoogle Scholar
  18. [18]
    Li, J. Q.; Xie, Z. Q.; Xiong, Y.; Li, Z. Z.; Huang, Q. X.; Zhang, S. Q.; Zhou, J. Y.; Liu, R.; Gao, X.; Chen, C. Q. et al. Architecture of β-graphdiyne-containing thin film using modified glaser–hay coupling reaction for enhanced photocatalytic property of TiO2. Adv. Mater. 2017, 29, 1700421.CrossRefGoogle Scholar
  19. [19]
    Ivanovskii, A. L. Graphynes and graphdyines. Prog. Solid State Chem. 2013, 41, 1–19.CrossRefGoogle Scholar
  20. [20]
    Xia, J.; Wang, X. L.; Tay, B. K.; Chen, S. S.; Liu, Z.; Yan, J. X.; Shen, Z. X. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res. 2017, 10, 1618–1626.CrossRefGoogle Scholar
  21. [21]
    Lu, X.; Luo, X.; Zhang, J.; Quek, S. Y.; Xiong, Q. H. Lattice vibrations and Raman scattering in two-dimensional layered materials beyond graphene. Nano Res. 2016, 9, 3559–3597.CrossRefGoogle Scholar
  22. [22]
    Sánchez-Royo, J. F.; Muñoz-Matutano, G.; Brotons-Gisbert, M.; Martínez-Pastor, J. P.; Segura, A.; Cantarero, A.; Mata, R.; Canet-Ferrer, J.; Tobias, G.; Canadell, E. et al. Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes. Nano Res. 2014, 7, 1556–1568.CrossRefGoogle Scholar
  23. [23]
    Zheng, Q. Y.; Luo, G. F.; Liu, Q. H.; Quhe, R. G.; Zheng, J. X.; Tang, K. C.; Gao, Z. X.; Nagase, S.; Lu, J. Structural and electronic properties of bilayer and trilayer graphdiyne. Nanoscale 2012, 4, 3990–3996.CrossRefGoogle Scholar
  24. [24]
    Srinivasu, K.; Ghosh, S. K. Graphyne and graphdiyne: Promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 2012, 116, 5951–5956.CrossRefGoogle Scholar
  25. [25]
    Long, M. Q.; Tang, L.; Wang, D.; Li, Y. L.; Shuai Z. G. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: Theoretical predictions. ACS Nano 2011, 5, 2593–2600.CrossRefGoogle Scholar
  26. [26]
    Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Electronic structure of three-dimensional graphyne. Phys. Rev. B 2000, 62, 11146–11151.CrossRefGoogle Scholar
  27. [27]
    Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Springer: New York, USA, 1995.CrossRefGoogle Scholar
  28. [28]
    Li, C.; Yao, Y.; Shen, X.; Wang, Y. G.; Li, J. J.; Gu, C. Z.; Yu, R. C.; Liu, Q.; Liu, M. Dynamic observation of oxygen vacancies in hafnia layer by in situ transmission electron microscopy. Nano Res. 2015, 8, 3571–3579.CrossRefGoogle Scholar
  29. [29]
    Li, C.; Gao, B.; Yao, Y.; Guan, X. X.; Shen, X.; Wang, Y. G.; Huang, P.; Liu, L. F.; Liu, X. Y.; Li, J. J. et al. Direct observations of nanofilament evolution in switching processes in HfO2-based resistive random access memory by in situ TEM studies. Adv. Mater. 2017, 29, 1602976.CrossRefGoogle Scholar
  30. [30]
    Gao, X.; Li, J.; Du, R.; Zhou, J. Y.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z. Q.; Wu, L. Z.; Liu, Z. F. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.CrossRefGoogle Scholar
  31. [31]
    Chang, L. Y.; Kirkland, A. I. Comparisons of linear and nonlinear image restoration. Microsc. Microanal. 2006, 12, 469–475.CrossRefGoogle Scholar
  32. [32]
    Marks, L. D. Wiener-filter enhancement of noisy HREM images. Ultramicroscopy 1996, 62, 43–52.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Chao Li
    • 1
  • Xiuli Lu
    • 1
  • Yingying Han
    • 1
  • Shangfeng Tang
    • 1
  • Yi Ding
    • 1
  • Ruirui Liu
    • 1
  • Haihong Bao
    • 1
  • Yuliang Li
    • 2
  • Jun Luo
    • 1
    Email author
  • Tongbu Lu
    • 1
    Email author
  1. 1.Center for Electron Microscopy, TUT-FEI Joint Laboratory, Tianjin Key Laboratory of Advanced Porous Functional Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and EngineeringTianjin University of TechnologyTianjinChina
  2. 2.Key Laboratory of Organic Solids, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations