Nano Research

, Volume 11, Issue 3, pp 1699–1713 | Cite as

Mechanically robust antireflective coatings

  • Sadaf Bashir Khan
  • Hui Wu
  • Xiaochen Huai
  • Sumeng Zou
  • Yuehua Liu
  • Zhengjun ZhangEmail author
Research Article


Mechanical strength is an essential parameter that influences and limits the lifetime performance of antireflective (AR) coatings in optical devices. Specifically, amphiphobic AR coatings with reduced reflectance are of great significance as they considerably enlarge the range of fundamental applications. Herein, we describe the design and fabrication of amphiphobic AR coatings with reduced reflectance and enhanced mechanical resilience. Introducing a thin polytetrafluoroethylene (PTFE) layer on top of the bilayer SiO2 coating via vapor deposition method makes it highly liquid repellent. We achieved reduced reflectance (< 1%) over the entire visible wavelength range, as well as tunability according to the desired wavelength region. The fabricated film showed better thermal stability (up to 300 °C) with stable AR efficiency, when an ultrathin dense coat of Al2O3 was deposited via atomic layer deposition (ALD) on the polymer-based bilayer SiO2 antireflective coating (P-BSAR). The experimental results prove that the omnidirectional AR coating in this study exhibits multifunctional properties and should be suitable for the production of protective optical equipment and biocompatible polymer films for the displays of portable electronic devices.


antireflection (AR) super-liquid repellency thin films thermally stable mechanically robust adhesion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to the financial support by the National Basic Research Program of China (973 program, No. 2013CB934301), the National Natural Science Foundation of China (Nos. 51531006 and 51572148), the Research Project of Chinese Ministry of Education (No. 113007A), and the Tsinghua University Initiative Scientific Research Program.

Supplementary material

12274_2017_1787_MOESM1_ESM.pdf (4.9 mb)
Mechanically robust antireflective coatings


  1. [1]
    Zhou, X. Y.; Zhang, Z. Z.; Xu, X. H.; Guo, F.; Zhu, X. T.; Men, X. H.; Ge, B. Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS Appl. Mater. Interfaces 2013, 5, 7208–7214.CrossRefGoogle Scholar
  2. [2]
    Ganesh, V. A.; Raut, H. K.; Nair, A. S.; Seeram, R. A review on self-cleaning coatings. J. Mater. Chem. 2011, 21, 16304–16322.CrossRefGoogle Scholar
  3. [3]
    Cassie, A. B. D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551.CrossRefGoogle Scholar
  4. [4]
    Bhushan, B.; Nosonovsk, M. The rose petal effect and the modes of superhydrophobicity. Phil. Trans. R. Soc. A: Math. Eng. Sci. 2010, 368, 4713–4728.CrossRefGoogle Scholar
  5. [5]
    Sun, Y. W.; Wang, L. L.; Gao, Y. Z.; Guo, D. M. Preparation of stable superamphiphobic surfaces on Ti-6Al-4V substrates by one-step anodization. Appl. Surf. Sci. 2015, 324, 825–830.CrossRefGoogle Scholar
  6. [6]
    Du, X.; Li, X. Y.; He, J. H. Facile fabrication of hierarchically structured silica coatings from hierarchically mesoporous silica nanoparticles and their excellent superhydrophilicity and superhydrophobicity. ACS Appl. Mater. Interfaces 2010, 2, 2365–2372.CrossRefGoogle Scholar
  7. [7]
    Xu, L. G.; He, J. H. Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles. Langmuir 2012, 28, 7512–7518.CrossRefGoogle Scholar
  8. [8]
    Schaeffer, D. A.; Polizos, G.; Smith, B. D.; Lee, D. F.; Hunter, S. R.; Datskos, P. G. Optically transparent and environmentally durable superhydrophobic coating based on functionalized SiO2 nanoparticles. Nanotechnology 2015, 26, 055602.CrossRefGoogle Scholar
  9. [9]
    Steele, A.; Bayer, I.; Loth, E. Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett. 2009, 9, 501–505.CrossRefGoogle Scholar
  10. [10]
    Tuteja, A.; Choi, W.; McKinley, G. H.; Cohen, R. E.; Rubner, M. F. Design parameters for superhydrophobicity and superoleophobicity. MRS Bull. 2008, 33, 752–758.CrossRefGoogle Scholar
  11. [11]
    Tuteja, A.; Choi, W.; Ma, M. L.; Mabry, J. M.; Mazzella, S. A.; Rutledge, G. C.; McKinley, G. H.; Cohen, R. E. Designing superoleophobic surfaces. Science 2007, 318, 1618–1622.CrossRefGoogle Scholar
  12. [12]
    Im, M.; Im, H.; Lee, J. H.; Yoon J. B.; Choi, Y. K. A robust superhydrophobic and superoleophobic surface with inversetrapezoidal microstructures on a large transparent flexible substrate. Soft Matter 2010, 6, 1401–1404.CrossRefGoogle Scholar
  13. [13]
    Lee, S. G.; Ham, D. S.; Lee, D. Y.; Bong, H.; Cho, K. Transparent superhydrophobic/translucent superamphiphobic coatings based on silica−fluoropolymer hybrid nanoparticles. Langmuir 2013, 29, 15051–15057.CrossRefGoogle Scholar
  14. [14]
    Ganesh, V. A.; Dinachali, S. S.; Raut, H. K.; Walsh, T. M.; Nair, A. S.; Ramakrishna, S. Electrospun SiO2 nanofibers as a template to fabricate a robust and transparent superamphiphobic coating. RSC Adv. 2013, 3, 3819–3824.CrossRefGoogle Scholar
  15. [15]
    Ge, D. T.; Yang, L. L.; Zhang, Y. F.; Rahmawan, Y.; Yang, S. Transparent and superamphiphobic surfaces from onestep spray coating of stringed silica nanoparticle/sol solutions. Part. Part. Syst. Charact. 2014, 31, 763–770.CrossRefGoogle Scholar
  16. [16]
    Steele, A.; Bayer, I.; Loth, E. Inherently superoleophobic nanocomposite coatings by spray atomization. Nano Lett. 2009, 9, 501–505.CrossRefGoogle Scholar
  17. [17]
    Nishizawa, S.; Shiratori, S. Fabrication of semi-transparent superoleophobic thin film by nanoparticle-based nano–microstructures on see-through fabrics. J. Mater. Sci. 2013, 48, 6613–6618.CrossRefGoogle Scholar
  18. [18]
    Sheen, Y. C.; Huang, Y. C.; Liao, C. S.; Chou, H. Y.; Chang, F. C. New approach to fabricate an extremely superamphiphobic surface based on fluorinated silica nanoparticles. J. Polym. Sci. Part B: Polym. Phys. 2008, 46, 1984–1990.CrossRefGoogle Scholar
  19. [19]
    Vourdas, N. E.; Vlachopoulou, M. E.; Tserepi, A.; Gogolides, E. Nano-textured polymer surfaces with controlled wetting and optical properties using plasma processing. Int. J. Nanotechnol. 2009, 6, 196–207.CrossRefGoogle Scholar
  20. [20]
    Xu, L. B.; Karunakaran, R. G.; Guo, J.; Yang, S. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 1118–1125.CrossRefGoogle Scholar
  21. [21]
    Manabe, K.; Nishizawa, S.; Kyung, K. H.; Shiratori, S. Optical phenomena and antifrosting property on biomimetics slippery fluid-infused antireflective films via layer-by-layer comparison with superhydrophobic and antireflective films. ACS Appl. Mater. Interfaces 2014, 6, 13985–13993.CrossRefGoogle Scholar
  22. [22]
    Zhou, H.; Wang, H. X.; Niu, H. T.; Gestos, A.; T. Lin, T. Robust, self-healing superamphiphobic fabrics prepared by two-step coating of fluoro-containing polymer, fluoroalkyl silane, and modified silica nanoparticles. Adv. Funct. Mater. 2013, 23, 1664–1670.CrossRefGoogle Scholar
  23. [23]
    Faustini, M.; Nicole, L.; Boissière, C.; Innocenzi, P.; Sanchez, C.; Grosso, D. Hydrophobic, antireflective, selfcleaning, and antifogging sol−gel coatings: An example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 2010, 22, 4406–4413.CrossRefGoogle Scholar
  24. [24]
    Wong, T. S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired selfrepairing slippery surfaces with pressure-stable omniphobicity. Nature 2011, 477, 443–447.CrossRefGoogle Scholar
  25. [25]
    Urata, C.; Masheder, B.; Cheng, D. F.; Hozumi, A. A thermally stable, durable and temperature-dependent oleophobic surface of a polymethylsilsesquioxane film. Chem. Commun. 2013, 49, 3318–3320.CrossRefGoogle Scholar
  26. [26]
    Kitamura, R.; Pilon, L.; Jonasz, M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 2007, 46, 8118–8133.CrossRefGoogle Scholar
  27. [27]
    Adair, R.; Chase, L. L.; Payne, S. A. Nonlinear refractiveindex measurements of glasses using three-wave frequency mixing. J. Opt. Soc. Am. B, 1987, 4, 875–881.CrossRefGoogle Scholar
  28. [28]
    Mazumder, P.; Jiang, Y. D.; Baker, D.; Carrilero, A.; Tulli, D.; Infante, D.; Hunt, A. T.; Pruneri, V. Superomniphobic, transparent, and antireflection surfaces based on hierarchical nanostructures. Nano Lett. 2014, 14, 4677–4681.CrossRefGoogle Scholar
  29. [29]
    Moghal, J.; Kobler, J.; Sauer, J.; Best, J.; Gardener, M.; Watt, A. A. R.; Wakefield, G. High-performance, single-layer antireflective optical coatings comprising mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2012, 4, 854–859.CrossRefGoogle Scholar
  30. [30]
    Kars, İ.; Çetin, S. Ş.; Kınacı, B.; Sarıkavak, B.; Bengi, A.; Altuntaş, H.; Öztürk, M. K.; Özçelik, S. Influence of thermal annealing on the structure and optical properties of d.c. magnetron sputtered titanium dioxide thin films. Surf. Interface Anal. 2010, 42, 1247–1251.CrossRefGoogle Scholar
  31. [31]
    Kulczyk-Malecka, J.; Kelly, P. J.; West, G.; Clarke, G. C. B.; Ridealgh, J. A. Characterisation studies of the structure and properties of as-deposited and annealed pulsed magnetron sputtered titania coatings. Coatings 2013, 3, 166–176.CrossRefGoogle Scholar
  32. [32]
    Wilson, C. A.; Grubbs, R. K.; George, S. M. Nucleation and growth during Al2O3 atomic layer deposition on polymers. Chem. Mater. 2005, 17, 5625–5634.CrossRefGoogle Scholar
  33. [33]
    Zhang, X. Y.; Zhao, J.; Whitney, A. V.; Elam, J. W.; Van Duyne, R. P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 2006, 128, 10304–10309.CrossRefGoogle Scholar
  34. [34]
    Whitney, V. A.; Elam, J. W.; Zou, S. L.; Zinovev, V. A.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Localized surface plasmon resonance nanosensor: A high-resolution distancedependence study using atomic layer deposition. J. Phys. Chem. B 2005, 109, 20522–20528.CrossRefGoogle Scholar
  35. [35]
    Bakshi, S. R.; Lahiri, D.; Patel, R. R. Agarwal, A. Nanoscratch behavior of carbon nanotube reinforced aluminum coatings. Thin Solid Films 2010, 518, 1703–1711.CrossRefGoogle Scholar
  36. [36]
    Deng, H.; Scharf, T. W.; Barnard, J. A. Adhesion assessment of silicon carbide, carbon, and carbon nitride ultrathin overcoats by nanoscratch techniques. J. Appl. Phys. 1997, 81, 5396–5398.CrossRefGoogle Scholar
  37. [37]
    Beake, B. D.; Vishnyakov, V. M.; Harris, A. J. Relationship between mechanical properties of thin nitride-based films and their behaviour in nano-scratch tests. Tribol. Int. 2011, 44, 468–475.CrossRefGoogle Scholar
  38. [38]
    Rau, K.; Singh. R.; Goldberg, E. Nanoindentation and nanoscratch measurements on silicone thin films synthesized by pulsed laser ablation deposition (PLAD). Mat. Res. Innovat. 2002, 5, 151–161.CrossRefGoogle Scholar
  39. [39]
    Manabe, K.; Matsuda, M.; Nakamura, C.; Takahashi, K.; Kyung, K. H.; Shiratori, S. Antifibrinogen, antireflective, antifogging surfaces with biocompatible nano-ordered hierarchical texture fabricated by layer-by-layer self-assembly. Chem. Mater. 2017, 29, 4745–4753.CrossRefGoogle Scholar
  40. [40]
    Tiwari, M. K.; Bayer, I. S.; Jursich, G. M.; Schutzius, T. M.; Megaridis, C. M. Highly liquid-repellent, large-area, nanostructured poly(vinylidenefluoride)/poly(ethyl 2-cyanoacrylate) composite coatings: Particle filler effects. ACS Appl. Mater. Interfaces 2010, 2, 1114–1119.CrossRefGoogle Scholar
  41. [41]
    Hou, X. H.; Deem, P. T.; Choy, K. L. Hydrophobicity study of polytetrafluoroethylene nanocomposite films. Thin solid Films 2012, 520, 4916–4920.CrossRefGoogle Scholar
  42. [42]
    Koch K.; Ensikat, H. J. The hydrophobic coatings of plant surfaces: Epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. Micron 2008, 39, 759–772.CrossRefGoogle Scholar
  43. [43]
    Cheng, Y. T.; Rodak, D. E.; Wong, C. A.; Hayden, C. A. Effects of micro- and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnology 2006, 17, 1359–1362.CrossRefGoogle Scholar
  44. [44]
    Mortazavi, V.; D’Souza, R. M., Nosonovsky, M. Study of contact angle hysteresis using the Cellular Potts Model. Phys. Chem. Chem. Phys. 2013, 15, 2749–2756.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Sadaf Bashir Khan
    • 1
  • Hui Wu
    • 1
  • Xiaochen Huai
    • 1
  • Sumeng Zou
    • 1
  • Yuehua Liu
    • 1
  • Zhengjun Zhang
    • 2
    Email author
  1. 1.The State Key Laboratory for New Ceramics & Fine Processing, School of Materials Science & EngineeringTsinghua UniversityBeijingChina
  2. 2.Advanced Key Laboratory for New Ceramics, School of Materials Science & EngineeringTsinghua UniversityBeijingChina

Personalised recommendations