Advertisement

Nano Research

, Volume 11, Issue 3, pp 1664–1675 | Cite as

Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting

  • Guang Liu
  • Dongying He
  • Rui Yao
  • Yong Zhao
  • Jinping LiEmail author
Research Article

Abstract

The development of highly efficient and inexpensive catalysts for oxygen evolving reactions (OERs) is extremely urgent for promoting the overall efficiency of water splitting. Herein we report the fabrication of a series of amorphous NiFeB nanoparticles with varying atomic ratios of Fe to (Ni + Fe) (χFe) by a facile chemical-reduction method. The amorphous NiFeB (χFe = 0.20) nanoparticles, combining the merits of in situ formation of borate-enriched NiFeOOH catalytic surface layers, intrinsic amorphous nanostructures, and an optimized degree of Fe doping, displayed highly active electrocatalytic performance towards the OER in a broad range of pH values (from alkaline to neutral conditions). The catalyst exhibited a relatively low overpotential of 216 mV with a Tafel slope of 40 mV/dec on Ni foam and 251 mV with a Tafel slope of 43 mV/dec on glassy carbon at 10 mA/cm2 in a 1 M KOH solution, demonstrating much greater OER efficiency than that of commercial RuO2. Long-term stability testing of the OER performance of NiFeB (χFe = 0.20) by chronoamperometry (overpotential (η) = 320 mV) over 200 h revealed no evidence of degradation. Facile, scalable synthesis and highly active water oxidation make the NiFeB nanoparticles very attractive for OER electrocatalysis.

Keywords

amorphous NiFeB electrocatalyst oxygen evolving reaction water splitting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We appreciate the financial funding supported by the National Natural Science Foundation of China (No. 51402205), Natural Science Foundation of Shanxi (No. 2015021058) and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. STIP-2016131).

Supplementary material

12274_2017_1783_MOESM1_ESM.pdf (5 mb)
Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting

References

  1. [1]
    Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.CrossRefGoogle Scholar
  2. [2]
    Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.CrossRefGoogle Scholar
  3. [3]
    Xu, K.; Chen, P. Z.; Li, X. L.; Tong, Y.; Ding, H.; Wu, X. J.; Chu, W. S.; Peng, Z. M.; Wu, C. Z.; Xie, Y. Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 2015, 137, 4119–4125.CrossRefGoogle Scholar
  4. [4]
    Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.CrossRefGoogle Scholar
  5. [5]
    Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygenevolving catalysts. Science 2016, 352, 333–337.CrossRefGoogle Scholar
  6. [6]
    Jung, S.; McCrory, C. C. L.; Ferrer, I. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking nanoparticulate metal oxide electrocatalysts for the alkaline water oxidation reaction. J. Mater. Chem. A 2016, 4, 3068–3076.CrossRefGoogle Scholar
  7. [7]
    Du, S. C.; Ren, Z. Y.; Zhang, J.; Wu, J.; Xi, W.; Zhu, J. Q.; Fu, H. G. Co3O4 nanocrystal ink printed on carbon fiber paper as a large-area electrode for electrochemical water splitting. Chem. Commun. 2015, 51, 8066–8069.CrossRefGoogle Scholar
  8. [8]
    Risch, M.; Klingan, K.; Heidkamp, J.; Ehrenberg, D.; Chernev, P.; Zaharieva, I.; Dau, H. Nickel-oxido structure of a water-oxidizing catalyst film. Chem. Commun. 2011, 47, 11912–11914.CrossRefGoogle Scholar
  9. [9]
    Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.CrossRefGoogle Scholar
  10. [10]
    Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energy Environ. Sci. 2010, 3, 1018–1027.CrossRefGoogle Scholar
  11. [11]
    Gong, M.; Dai, H. J. A mini review of nife-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.CrossRefGoogle Scholar
  12. [12]
    Wang, L. X.; Geng, J.; Wang, W. H.; Yuan, C.; Kuai, L.; Geng, B. Y. Facile synthesis of Fe/Ni bimetallic oxide solid-solution nanoparticles with superior electrocatalytic activity for oxygen evolution reaction. Nano Res. 2015, 8, 3815–3822.CrossRefGoogle Scholar
  13. [13]
    Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253–17261.CrossRefGoogle Scholar
  14. [14]
    Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 2016, 41, 17976–17986.CrossRefGoogle Scholar
  15. [15]
    Jiang, J.; Zhang, C. H.; Ai, L. H. Hierarchical iron nickel oxide architectures derived from metal-organic frameworks as efficient electrocatalysts for oxygen evolution reaction. Electrochim. Acta 2016, 208, 17–24.CrossRefGoogle Scholar
  16. [16]
    Zhang, K.; Wang, W. H.; Kuai, L.; Geng, B. Y. A facile and efficient strategy to gram-scale preparation of compositioncontrollable Ni-Fe LDHs nanosheets for superior OER catalysis. Electrochim. Acta 2017, 225, 303–309.CrossRefGoogle Scholar
  17. [17]
    Liu, G.; Gao, X. S.; Wang, K. F.; He, D. Y.; Li, J. P. Mesoporous nickel-iron binary oxide nanorods for efficient electrocatalytic water oxidation. Nano Res. 2017, 10, 2096–2105.CrossRefGoogle Scholar
  18. [18]
    Li, C.; Han, X. P.; Cheng, F. Y.; Hu, Y. X.; Chen, C. C.; Chen, J. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nat. Commun. 2015, 6, 7345.CrossRefGoogle Scholar
  19. [19]
    Su, Y.-Z.; Xu, Q.-Z.; Chen, G.-F.; Cheng, H.; Li, N.; Liu, Z.-Q. One dimensionally spinel NiCo2O4 nanowire arrays: Facile synthesis, water oxidation, and magnetic properties. Electrochim. Acta 2015, 174, 1216–1224.CrossRefGoogle Scholar
  20. [20]
    Li, L. L.; Tian, T.; Jiang, J.; Ai, L. H. Hierarchically porous Co3O4 architectures with honeycomb-like structures for efficient oxygen generation from electrochemical water splitting. J. Power Sources 2015, 294, 103–111.CrossRefGoogle Scholar
  21. [21]
    Liu, G.; Wang, K. F.; Gao, X. S.; He, D. Y.; Li, J. P. Fabrication of mesoporous NiFe2O4 nanorods as efficient oxygen evolution catalyst for water splitting. Electrochim. Acta 2016, 211, 871–878.CrossRefGoogle Scholar
  22. [22]
    Surendranath, Y.; Dincă, M.; Nocera, D. G. Electrolytedependent electrosynthesis and activity of cobalt-based water oxidation catalysts. J. Am. Chem. Soc. 2009, 131, 2615–2620.CrossRefGoogle Scholar
  23. [23]
    Kanan, M. W.; Surendranath, Y.; Nocera, D. G. Cobalt–phosphate oxygen-evolving compound. Chem. Soc. Rev. 2009, 38, 109–114.CrossRefGoogle Scholar
  24. [24]
    Fominykh, K.; Chernev, P.; Zaharieva, I.; Sicklinger, J.; Stefanic, G.; Doblinger, M.; Müller, A.; Pokharel, A.; Bocklein, S.; Scheu, C. et al. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 2015, 9, 5180–5188.CrossRefGoogle Scholar
  25. [25]
    Nurlaela, E.; Shinagawa, T.; Qureshi, M.; Dhawale, D. S.; Takanabe, K. Temperature dependence of electrocatalytic and photocatalytic oxygen evolution reaction rates using nife oxide. ACS Catal. 2016, 6, 1713–1722.CrossRefGoogle Scholar
  26. [26]
    Wang, J. Y.; Ji, L. L.; Chen, Z. F. In situ rapid formation of a nickel–iron-based electrocatalyst for water oxidation. ACS Catal. 2016, 6, 6987–6992.CrossRefGoogle Scholar
  27. [27]
    Zuo, Z.-J.; Wang, L.; Han, P.-D.; Huang, W. Insights into the reaction mechanisms of methanol decomposition, methanol oxidation and steam reforming of methanol on Cu(111): A density functional theory study. Int. J. Hydrogen Energy 2014, 39, 1664–1679.CrossRefGoogle Scholar
  28. [28]
    Xu, K.; Ding, H.; Lv, H. F.; Chen, P. Z.; Lu, X. L.; Cheng, H.; Zhou, T. P.; Liu, S.; Wu, X. J.; Wu, C. Z. et al. Dual electrical-behavior regulation on electrocatalysts realizing enhanced electrochemical water oxidation. Adv. Mater. 2016, 28, 3326–3332.CrossRefGoogle Scholar
  29. [29]
    Jia, X. D.; Zhao, Y. F.; Chen, G. B.; Shang, L.; Shi, R.; Kang, X. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets: An efficient overall water splitting electrocatalyst. Adv. Energy Mater. 2016, 6, 1502585.CrossRefGoogle Scholar
  30. [30]
    Stern, L.-A.; Feng, L. G.; Song, F.; Hu, X. L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 2015, 8, 2347–2351.CrossRefGoogle Scholar
  31. [31]
    Zhou, W. J.; Wu, X.-J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution. Energy Environ. Sci. 2013, 6, 2921–2924.CrossRefGoogle Scholar
  32. [32]
    Gao, M. R.; Cao, X.; Gao, Q.; Xu, Y. F.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 2014, 8, 3970–3978.CrossRefGoogle Scholar
  33. [33]
    Liao, M.; Zeng, G. F.; Luo, T. T.; Jin, Z. Y.; Wang, Y. J.; Kou, X. M.; Xiao, D. Three-dimensional coral-like cobalt selenide as an advanced electrocatalyst for highly efficient oxygen evolution reaction. Electrochim. Acta 2016, 194, 59–66.CrossRefGoogle Scholar
  34. [34]
    Xu, K.; Cheng, H.; Liu, L. Q.; Lv, H. F.; Wu, X. J.; Wu, C. Z.; Xie, Y. Promoting active species generation by electrochemical activation in alkaline media for efficient electrocatalytic oxygen evolution in neutral media. Nano Lett. 2017, 17, 578–583.CrossRefGoogle Scholar
  35. [35]
    Gupta, S.; Patel, N.; Fernandes, R.; Hanchate, S.; Miotello, A.; Kothari, D. Co-Mo-B nanoparticles as a non-precious and efficient bifunctional electrocatalyst for hydrogen and oxygen evolution. Electrochim. Acta 2017, 232, 64–71.CrossRefGoogle Scholar
  36. [36]
    Duan, J. J.; Chen, S.; Vasileff, A.; Qiao, S. Z. Anion and cation modulation in metal compounds for bifunctional overall water splitting. ACS Nano 2016, 10, 8738–8745.CrossRefGoogle Scholar
  37. [37]
    Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Wang, W. L.; Bai, X. D. 3D graphene foam-supported cobalt phosphate and borate electrocatalysts for high-efficiency water oxidation. Sci. Bull. 2015, 60, 1426–1433.CrossRefGoogle Scholar
  38. [38]
    Guo, S. J.; Yang, Y. M.; Liu, N. Y.; Qiao, S.; Huang, H.; Liu, Y.; Kang, Z. H. One-step synthesis of cobalt, nitrogencodoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions. Sci. Bull. 2016, 61, 68–77.CrossRefGoogle Scholar
  39. [39]
    Bediako, D. K.; Surendranath, Y.; Nocera, D. G. Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 2013, 135, 3662–3674.CrossRefGoogle Scholar
  40. [40]
    Dincă, M.; Surendranath, Y.; Nocera, D. G. Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 10337–10341.CrossRefGoogle Scholar
  41. [41]
    Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z. Y.; Somsen, C.; Muhler, M.; Schuhmann, W. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 2016, 6, 1502313.CrossRefGoogle Scholar
  42. [42]
    Chen, P. Z.; Xu, K.; Zhou, T. P.; Tong, Y.; Wu, J. C.; Cheng, H.; Lu, X. L.; Ding, H.; Wu, C. Z.; Xie, Y. Strong-coupled cobalt borate nanosheets/graphene hybrid as electrocatalyst for water oxidation under both alkaline and neutral conditions. Angew. Chem., Int. Ed. 2016, 55, 2488–2492.CrossRefGoogle Scholar
  43. [43]
    Indra, A.; Menezes, P. W.; Sahraie, N. R.; Bergmann, A.; Das, C.; Tallarida, M.; Schmeiβer, D.; Strasser, P.; Driess, M. Unification of catalytic water oxidation and oxygen reduction reactions: Amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 2014, 136, 17530–17536.CrossRefGoogle Scholar
  44. [44]
    Bergmann, A.; Martinez-Moreno, E.; Teschner, D.; Chernev, P.; Gliech, M.; de Araújo, J. F.; Reier, T.; Dau, H.; Strasser, P. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 2015, 6, 8625.CrossRefGoogle Scholar
  45. [45]
    Li, F. W.; Zhao, S.-F.; Chen, L.; Khan, A.; MacFarlane, D. R.; Zhang, J. Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphenesupported amorphous molybdenum sulphide. Energy Environ. Sci. 2016, 9, 216–223.CrossRefGoogle Scholar
  46. [46]
    Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Threedimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015–6021.CrossRefGoogle Scholar
  47. [47]
    Irshad, A.; Munichandraiah, N. High catalytic activity of amorphous ir-pi for oxygen evolution reaction. ACS Appl. Mater. Interfaces 2015, 7, 15765–15776.CrossRefGoogle Scholar
  48. [48]
    Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7584–7588.CrossRefGoogle Scholar
  49. [49]
    McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.CrossRefGoogle Scholar
  50. [50]
    Liu, G.; Qiu, F. Y.; Li, J.; Wang, Y. J.; Li, L.; Yan, C.; Jiao, L. F.; Yuan, H. T. NiB nanoparticles: A new nickel-based catalyst for hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2012, 37, 17111–17117.CrossRefGoogle Scholar
  51. [51]
    Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332.CrossRefGoogle Scholar
  52. [52]
    Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.CrossRefGoogle Scholar
  53. [53]
    Chen, Y.-W.; Sasirekha, N. Preparation of NiFeB nanoalloy catalysts and their applications in liquid-phase hydrogenation of p-chloronitrobenzene. Ind. Eng. Chem. Res. 2009, 48, 6248–6255.CrossRefGoogle Scholar
  54. [54]
    Zhao, Q.; Yu, Z. B.; Yuan, W.; Li, J. P. A WO3/Ag–Bi oxygen-evolution catalyst for splitting water under mild conditions. Int. J. Hydrogen Energy 2012, 37, 13249–13255.CrossRefGoogle Scholar
  55. [55]
    Wang, W.; Zhao, Q.; Dong, J. X.; Li, J. P. A novel silver oxides oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 2011, 36, 7374–7380.CrossRefGoogle Scholar
  56. [56]
    Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure–activity correlations in a nickel–borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801–6809.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Guang Liu
    • 1
  • Dongying He
    • 1
  • Rui Yao
    • 1
  • Yong Zhao
    • 1
  • Jinping Li
    • 1
    Email author
  1. 1.Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Research Institute of Special ChemicalsTaiyuan University of TechnologyTaiyuanChina

Personalised recommendations